Directions: Complete the square in each equation below. Write an equation in standard form for each circle. Then, give its center and its radius.

1.)
$$x^2 + y^2 - 6y = -5$$

2.)
$$x^2 - 8x + y^2 + 2y = 8$$

3.)
$$x^2 + y^2 + 4y = 12$$

4.)
$$x^2 - 2x + y^2 = 80$$

5.)
$$x^2 + 8x + y^2 - 2y = 64$$

6.)
$$x^2$$
 - 24x + y^2 + 6y = -137

7.)
$$x^2 + 14x + y^2 - 12y = -4$$

7.)
$$x^2 + 14x + y^2 - 12y = -4$$

8.) $x^2 + 2x + y^2 - 24y = -120$

9.)
$$x^2 + 2x + y^2 - 10y = 55$$

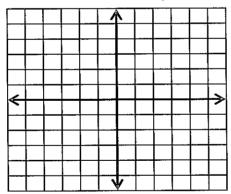
9.)
$$x^2 + 2x + y^2 - 10y = 55$$
 10.) $x^2 - 8x + y^2 - 32y = -263$

- 11.) MULTIPLE CHOICE Which point does not lie on the circle described by the equation $(x + 2)^2 + (y - 4)^2 = 25$? SHOW WORK!!
 - A. (-2, -1) B. (0, 5) C. (3, 4) D. (1, 8)

Directions: Write an equation of a circle in standard form.
(Hint: you might need to use distance and/or midpoint formula)

12.) Center: (2, -5) Point on circle: (-7, -1)

13.) Endpoints of a diameter are (-3, 11) and (3, -13)


14.) Earthquakes After an earthquake, you are given seismograph readings from three locations, where the coordinate units are miles.

At A(-1, -1), the epicenter is 2 miles away.

At B(1, 2), the epicenter is 3 miles away.

At C(2.5, -2.5), the epicenter is 2 miles away.

a. Graph three circles in one coordinate plane to represent the possible epicenter locations determined by each of the seismograph readings.

b. What are the coordinates of the epicenter?

c. People could feel the earthquake up to 7 miles from its epicenter. Could a person at (-5, 3) feel it? Explain in words or use a formula to explain.