4．1 Notes：Radian and Degree Measure－Day 1 （Radians \＆Reference Angles）

TRIGONOMETRY is the study of angles \＆triangles．We begin this unit with the basics of angles．

An \qquad is determined by rotating a ray about its endpoint．The starting position of the ray is the \qquad of the angle， and the position after rotation is the \qquad
\qquad ．The endpoint of the ray is called the \qquad of the angle．When the vertex of the angle is fixed at the origin of the coordinate plane with the initial side sitting on the \qquad x－axis，the angle is said to be in
\qquad —．
\qquad are generated by counterclockwise rotation and negative angles are generated by \qquad
\qquad Angles that have the same initial and terminal sides are called \qquad ．If the terminal side of an angle falls on the x－axis or the y－axis，then that angle is called a

Definition of Radian

One radian（rad）is the measure of a central angle θ that intercepts an arc s equal in length to the radius r of the circle．See Figure 4．5．Algebraically
this means that

$$
\theta=\frac{s}{r}
$$

where θ is measured in radians．

In other words．．．Radians are a way to measure angles in terms of the length of the radius． An angle of 1 radian results in an arc with a length equal to the radius of the circle．

The circumference of a circle is found using the formula： \qquad If $r=1$ then the circumference is： \qquad

1 revolution＝ \qquad radians $=$ \qquad。

$$
\frac{1}{2} \text { revolution }=
$$

\qquad radians $=$ \qquad －
$\frac{1}{4}$ revolution $=$ \qquad radians $=$ \qquad。
$\frac{1}{6}$ revolution $=$ \qquad radians $=$ \qquad $\frac{1}{8}$ revolution $=$ \qquad radians $=$ \qquad －$\frac{1}{12}$ revolution $=$ \qquad radians $=$ \qquad。
radian．

Arc length $=$ radius when $\theta=1$

Reference Angles

The values of the trigonometric functions of angles greater than 90° (or less than 0°) can be determined from their values at the corresponding acute angles called reference angles.
Let θ be an angle in \qquad
\qquad . Its reference angle is the \qquad
\qquad θ^{\prime} formed by the \qquad
\qquad of θ and the \qquad .

$\theta^{\prime}=\pi-\theta$ (radians)
$\theta^{\prime}=180^{\circ}-\theta$ (degrees)

EXAMPLE 1 - Draw angles in standard position and finding reference angles
Draw each angle in standard position. Then determine the reference angle (if it's not quadrantal).

