3.1 Notes-Part 4: Application Problems

1. MEDICINE When a person takes a dosage of I milligrams of ibuprofen, the amount A (in milligrams) of medication remaining in the person's bloodstream after t hours can be modeled by the equation $A=I(0.71)^{t}$.

Amount of Ibuprofen in Bloodstream

$t=0$
$t=1$
$t=2$
$t=3$

Find the amount of ibuprofen remaining in a person's bloodstream for the given dosage and elapsed time since the medication was taken.
a. Dosage: 200 mg
Time: 1.5 hours
b. Dosage: 325 mg Time: 3.5 hours
c. Dosage: 400 mg Time: 5 hours
2. Bike Costs: You buy a new bike for $\$ 200$. The value of the bike decreases by 25\% each year.
a) Write a model giving the mountain bikes value in dollars after t years.
b) Graph the model.
c) Estimate when the value of the bike will be $\$ 100$.
3. The value of a car can be modeled by $y=24000(0.845)^{\dagger}$ where t is the amount of years since the car was purchased.
a) What was the original price of the car?
b) By what percent is the car depreciating each year?
c) Sketch a graph of the model. Estimate when the car will be worth $\$ 10,000$.
d) Estimate the car's value in 50 years. Is this a reasonable value?
4. When a plant or animal dies, it stops acquiring carbon-14 from the atmosphere. Carbon-14 decays over time with a $\frac{1}{2}$ life of about 5,730 years. The percent P of the original amount of Carbon-14 that remains in a sample after \dagger years is given by: $\quad P=100\left(\frac{1}{2}\right)^{(t / 5730)}$.
a) What percent of the original carbon-14 remains in a sample after:
2500 years?
5000 years?
10,000 years?
b) An archaeologist found a bison bone that contained about 37% of the carbon-14 present when the bison died. Make a graph and use your answers to part a to establish your windows. Estimate the age of the bone when it was found.

