Precalculus

8.1 Notes: Sequences and Series-Day 2

If n is a positive integer, n FACTORIAL is defined as: $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 3 \cdot 2 \cdot 1$.

n! = n(n-1)! 1! = 1(0-1)! 1! = 1(0)!

Evaluate.

71 = 7.6.5.4.3.2.1 = (5040

Simplify the factorial expression.

9-8-7-6-5-4-3-2-1 3-2-1-7-4-7-4-8-7-X $\frac{72}{10} = (12)$

OR: 9.8.7! +12

Write the first 5 terms of the sequence. 3.

 $a_n = \frac{2^n}{n!}$ $a_n = \frac{2^n}{n!} = \frac{2^$ $Q_2 = \frac{2^2}{2!} = \frac{4}{2!} = Q$ $Q_3 = \frac{2^3}{3!} = \frac{8}{3!2!} = \frac{4}{3}$ $\Delta 4 = \frac{2^4}{4!} = \frac{16}{4.3.2.1} = \frac{2}{3}$ $0.5 = \frac{2^5}{54321} = \frac{4}{15}$ 2, 2, 413, 213, 4/15

Simplify the factorial expression.

 $\frac{(n+1)!}{n!}$ $\frac{(n+1)(n)(n+1)(n+2)}{(n+1)(n+1)(n+2)}$

n+1

A Series can be written with

Summation notation where the sum of the first n terms of a sequence is represented

by $\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + ... + a_n$, where i is called the <u>index of Summation</u>,

n is the upper limit and 1 is the lower limit

Find the sum.

 $\sum_{i=1}^{n} (4i+1)$

4(1)+1 = 54(2)+1 = 9

4(3)+1 = 13

U(4)+1 = 17

5+9+13+17 114 6. $\sum_{k=0}^{5} (2 + k^3)$

 $2 + (2)^{3} = 10$ $2 + (3)^{3} = 29$ $2 + (4)^{3} = 106$ $2 + (5)^{3} = 127$ $1 + 1 + \frac{1}{2} + \frac{1}{6}$

10+29+66+127=

7. $\sum_{n=0}^{\infty} \left(\frac{1}{n!} \right)$

01 + 11 + 21 + 31 + 41 + 51 + 6

1+1+ =+ =+ ==+ ==+

776 + 5444 + 40320

≈ 2.7182877 ≈ €

How many terms are in this series? (

How many terms are in this series?

How many terms are in this series?

To find the number of terms in a series:

(upper-lower) +1

An infinite Series) is the sum of all the terms of the sequence.

Find the sum.

$$8. \qquad \sum_{k=1}^{3} \left(\frac{3}{10^k} \right)$$

$$=\frac{3}{10^{1}}+\frac{3}{10^{2}}+\frac{3}{10^{3}}$$

$$= .3 + .03 + .003$$

$$= (.333) \text{ or } (333)$$

$$9. \qquad \sum_{k=1}^{\infty} \left(\frac{3}{10^k} \right)$$

$$\frac{3}{10^{1}} + \frac{3}{10^{2}} + \frac{3}{10^{3}} + \frac{3}{10^{4}} + \frac{3}{10^{5}} + \dots$$

*third partial sum

10.
$$\sum_{k=1}^{3} 5\left(\frac{1}{10^{k}}\right)$$

$$5(\frac{1}{10^{1}}) + 5(\frac{1}{10^{2}}) + 5(\frac{1}{10^{3}})$$

$$\frac{555}{1000} = \frac{111}{200}$$

$$11. \qquad \sum_{k=1}^{\infty} 5 \left(\frac{1}{10^k} \right)$$

$$5(\frac{1}{18}) + 5(\frac{1}{18}) + 5(\frac{1}{18}) + 5(\frac{1}{18}) + 5(\frac{1}{18}) + 10$$

^{*}third partial sum