Precalculus

Name _____

8.1 Notes: Sequences and Series-Day 1

A ______ is a function whose DOMAIN is a set of consecutive integers. If a domain is NOT SPECIFIED it is understood that the domain starts with _____. The values in the RANGE are called the ______ of the sequence.

Domain	1	2	3	 	 n
Range	<i>a</i> ₁	a ₂	a ₃		

 a) How many terms are in this sequence? b) What is a₃? c) Write a rule for finding the nth term. 	A	has a limited number of terms. An example would be: 1, 2, 4, 8, 16
	a)	How many terms are in this sequence?
c) Write a rule for finding the nth term.	b)	What is a ₃ ?
	c)	Write a rule for finding the nth term.

An ______ continues without stopping. The set of natural numbers is an example of an infinite sequence. What are the natural numbers?

a) What is a_5 ?

Instead of using function notation, sequences are usually written using subscript notation.

Write the first five terms of the sequence.	Write the first five terms of the sequence.	Find the 3 rd , 4 th and 5 th term of the sequence.
1 . $a_n = 2n + 1$	2 . $a_n = 2 - (-1)^n$	3. $a_n = \frac{2 + (-1)^n}{n}$
		n

Write an expression for the apparent n^{th} term of the sequence. (Assume *n* begins with 1).

4 . 2, 4, 6, 8	5. 1, 3, 5, 7
What is the rule?	What is the rule?
What is a ₇ ?	What is a ₈ ?

6 . 1, 4, 9, 16			7. 2, 5, 10, 17,				
1, 2,	7, 14,23			9 . 1, 2, -	-7, 14, -23		
	ssing terms:	built using	PREVIOUS	TERMS the	sequence i	s said to be c	defined
<i>a</i> ₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇	a _n
1	2	6	24			5040	
	rule: a ₃ = der the seque pattern in wo	nce 1, 1, 2, 3	a ₄ = a ₃ • , 5, 8, 13, 21	11. Write $a_{k+1} = \frac{1}{2}a_k;$		ve terms of th	e sequence
	rsive formula	to define t	his	_			

Write an expression for the apparent n^{th} term of the sequence.

What is this very famous sequence of numbers called?

Precalculus	Name	
8.1 Notes: Sequences and Series	s-Day 2	
If <i>n</i> is a positive integer, <i>n</i>	_is defined as:	$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1.$

As a special case, zero factorial is defined as: _____.

•				
1.	Evaluate. 7!		2. Simplify 9! 3!7!	the factorial expression.
3.	Write the first 5 terms of $a_n = \frac{2^n}{n!}$	[:] the sequence.	4. Simplify $\frac{(n+1)!}{n!}$	the factorial expression.
A	is the sum	of the terms in a	sequence A serie	es can be written with
<u> </u>				
by $\sum_{i=1}^{n} a_{i}$	$a_i = a_1 + a_2 + a_3 + \dots + a_n$, when			terms of a sequence is represented ,
n is the	2	and 1 is the		·
Find th	e sum.			
5. How n	$\sum_{i=1}^{4} (4i + 1)$	6. $\sum_{k=2}^{5} (2 + k^3)$ How many terms		7. $\sum_{n=0}^{8} \left(\frac{1}{n!}\right)$ How many terms are in this
series	-	series?		series?

To find the number of terms in a series:

Α	_ is the sum of the fir	rst <i>n</i> ter	rms of the sequence, which is also called a
An Find the sum.	 is the sum of all th	e terms	s of the sequence.
$8. \qquad \sum_{k=1}^{3} \left(\frac{3}{10^{k}}\right)$		9.	$\sum_{k=1}^{\infty} \left(\frac{3}{10^k} \right)$
*third partial sum			
$10. \qquad \sum_{k=1}^{3} 5\left(\frac{1}{10^{k}}\right)$		11.	$\sum_{k=1}^{\infty} 5\left(\frac{1}{10^k}\right)$
*third partial sum			