Precalculus

Name

8.1 Notes: Sequences and Series-Day 1

A \qquad is a function whose DOMAIN is a set of consecutive integers. If a domain is NOT SPECIFIED it is understood that the domain starts with \qquad . The values in the RANGE are called the \qquad of the sequence.

Domain	1	2	3	\ldots	\ldots	\ldots	n
Range	a_{1}	a_{2}	a_{3}				

A \qquad has a limited number of terms. An example would be: 1, 2, 4, 8, 16
a) How many terms are in this sequence?
b) What is a_{3} ?
c) Write a rule for finding the nth term.

An \qquad continues without stopping. The set of natural numbers is an example of an infinite sequence. What are the natural numbers?
a) What is a_{5} ?

Instead of using function notation, sequences are usually written using subscript notation.

Write the first five terms of the sequence. 1.$a_{n}=2 n+1$	Write the first five terms of the sequence. 2. $a_{n}=2-(-1)^{n}$	Find the $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ term of the sequence. $a_{n}=\frac{2+(-1)^{n}}{n}$

Write an expression for the apparent $n^{\text {th }}$ term of the sequence. (Assume n begins with 1).
4. $2,4,6,8$...

What is the rule?
What is a_{7} ?
5. $1,3,5,7$

What is the rule?
What is a_{8} ?

Write an expression for the apparent $n^{\text {th }}$ term of the sequence. (Assume n begins with 1).

| 6. $1,4,9,16$ | 7. $2,5,10,17, \ldots$ |
| :--- | :--- | :--- |
| 8. $1,2,7,14,23 \ldots$ | $9.1,2,-7,14,-23 \ldots$ |

When a sequence is built using PREVIOUS TERMS the sequence is said to be defined
\qquad .

Fill in the missing terms:

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{n}
1	2	6	24			5040	

To find the rule:
$a_{2}=a_{1}$.
$a_{3}=a_{2}$
$a_{4}=a_{3}$.
$a_{n}=$
10. Consider the sequence $1,1,2,3,5,8,13,21$...
11. Write the first five terms of the sequence.

Describe the pattern in words.
$a_{k+1}=\frac{1}{2} a_{k}: \quad a_{1}=32$

Write a recursive formula to define this sequence.

Write an expression for the apparent $n^{\text {th }}$ term of the sequence.

What is this very famous sequence of numbers called?

8.1 Notes: Sequences and Series-Day 2

If n is a positive integer, n \qquad is defined as: $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$.

As a special case, zero factorial is defined as: \qquad .

| 1.Evaluate.
 $7!$ | 2.

 3.Write the first 5 terms of the sequence.
 $a_{n}=\frac{2^{n}}{n!}$ | 4.Simplify therial expression.
 $\frac{(n+1)!}{n!}$ |
| :--- | :--- | :--- | :--- |

A \qquad is the sum of the terms in a sequence. A series can be written with where the sum of the first n terms of a sequence is represented
by $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$, where i is called the \qquad -
n is the \qquad and 1 is the \qquad .

Find the sum.
6. $\quad \sum_{k=2}^{5}\left(2+k^{3}\right)$
7. $\sum_{n=0}^{8}\left(\frac{1}{n!}\right)$
5. $\quad \sum_{i=1}^{4}(4 i+1)$

How many terms are in this series?

To find the number of terms in a series:
\qquad is the sum of the first n terms of the sequence, which is also called a

An \qquad is the sum of all the terms of the sequence.

Find the sum.

8. $\sum_{k=1}^{3}\left(\frac{3}{10^{k}}\right)$	9.	$\sum_{k=1}^{\infty}\left(\frac{3}{10^{k}}\right)$
*third partial sum		
10. $\sum_{k=1}^{3} 5\left(\frac{1}{10^{k}}\right)$	11.	$\sum_{k=1}^{\infty} 5\left(\frac{1}{10^{k}}\right)$
$)$		

