8.2 Notes: Arithmetic Sequences and Partial Sums

Arithmetic Sequences, also known as a discrete linear function, is a sequence for which consecutive terms have a common difference, d.

Determine whether or not the sequence is arithmetic. If it is, find the common difference.

1.	$5,8,11,14,17, \ldots$	2.
	$1,4,9,16,25, \ldots$	
3.	$1, \frac{7}{6}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, \ldots$	4.

Writing an explicit formula/rule for an arithmetic sequence a_{n}.

Write an explicit rule for the given sequence. Then answer any additional questions. Assume $n \geq 1$.
5. $5,12,19,26, \ldots$
6. Find an explicit formula for a_{n} for the arithmetic sequence with the following terms:
$a_{3}=19$ and $a_{5}=27$.

7. $29,25,21,17,13,9, \ldots$	$8.11,5,-1,-7,-13,-19, \ldots$

Arithmetic Series

Find the sum of: $\quad 40+37+34+31+28+25+22$
The \qquad of a finite arithmetic sequence with n terms ($n^{t h}$ partial sum) can be found by:
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad$ where $n=$ \qquad $a_{1}=$ \qquad and $a_{n}=$ \qquad
Find the sum of the finite arithmetic sequence.

11. Sum of integers from 1 to 35.	12. Sum of odd integers from 1 to 57	
13.$50^{\text {th }}$ partial sum of the arithmetic sequence $-6,-2,2,6, \ldots$	14. Determine the seating capacity of an auditorium with 30 rows of seats if there are 20 seats in the first row, 22 in the second, 24 in the third row, and so on.	
15.	$\sum_{n=1}^{100}(2+3 n)$	16.

