8.3 Notes: Geometric Sequences and Series

A sequence is \qquad if the ratios of consecutive terms are the same. So
$a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is geometric if there is a number r such that $\frac{a_{2}}{a_{1}}=\frac{a_{2}}{a_{1}}=\frac{a_{2}}{a_{1}}=\ldots r: r \neq 0$.
Determine whether each sequence is geometric. If so, find r.

$1.3,-9,27,-81,243 \ldots$	2.	$\frac{1}{4}, \frac{1}{16}, \frac{1}{64} \ldots$	$3.1,2,64,120 \ldots$

Fill in the blanks with the missing terms of the geometric sequence.
4. $144, \ldots, 36, \ldots, 9,4.5$
5. $5,15,45$, \qquad

Part 1:
$a_{2}=5$.
$a_{3}=5$ •
$a_{4}=5$ -

Part 2:
$a_{2}=a_{1} \cdot$
$a_{3}=a_{1} \cdot$
$a_{4}=a_{1} \cdot$
$a_{n}=$

Part 3:

Find a_{10}

In a geometric sequence, we repeatedly \qquad to get successive terms. Hence, to write an explicit formula for the $n^{\text {th }}$ term, we must have a power of r.

$$
a_{n}=
$$

Examples
6. Find the $n^{\text {th }}$ term of the geometric sequence. Write the first five terms of the geometric sequence whose first term is 2 and whose common ratio is 4 .
7. Find the $9^{\text {th }}$ term of the geometric sequence whose first term is 4 and whose common ratio is $\frac{1}{2}$.
8. Find the $n^{\text {th }}$ term of the geometric sequence and then find the value of the tenth term.
$6,-2, \frac{2}{3}, \ldots$
9. Find the value of the sixth term of a sequence whose second term is -18 and the fifth term is $\frac{2}{3}$.

A \qquad is the sum of the terms of a geometric sequence.

Sum of a finite geometric sequence
$S_{n}=\sum_{i=1}^{n} a_{1} r^{i-1}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)$

$$
\begin{aligned}
& r= \\
& n= \\
& a_{1}= \\
&
\end{aligned}
$$

Sum of an infinite geometric sequence

**If $|r|<1$, then $S_{\infty}=\sum_{i=0}^{\infty} a_{1} r^{i}=\frac{a_{1}}{1-r}$
**If $|r|>1$, the series does not have a sum.

Determine whether each series is infinite or finite. Then, find each sum.

10. $\sum_{n=1}^{7} 2^{n-1}$	$11 . \quad \sum_{n=1}^{\infty} 4(0.6)^{n-1}$	$12 . \frac{3}{4}+\frac{15}{8}+\frac{75}{16}+\ldots$		
13. $\frac{2}{3}+\frac{1}{3}+\frac{1}{6}$	14.	$4+2+1+\frac{1}{2}+\ldots+\frac{1}{32}$	15.	$5+.5+.05+.005 \ldots$

