9.1 Notes: Parabolas

Parabola: The set of all points (x, y) in a plane that are _____ from a

fixed line called the ______, and a fixed point called the _____.

Info about Parabolas		
Standard Equation	$\left(x-h\right)^2=4p\left(y-k\right)$	$(y-k)^2 = 4p(x-h)$
Axis of Symmetry (AOS)	<i>x</i> = <i>h</i>	y = k
Vertex	(h,k)	(h,k)
Focus	(h,k+p)	(h+p,k)
Directrix	y = k - p	x = h - p
Direction of	Upward if $p > 0$	Right if $p > 0$
Opening	Downward if p < 0	Left if $p < 0$
Latus Rectum (LR)	4 <i>p</i>	4 <i>p</i>

- > The midpoint between the focus and the directrix is the _____.
- > The line passing through the focus and the vertex is the _____
- > The _____ and the axis of symmetry are always perpendicular.
- > The ______ is a line segment perpendicular to the axis of symmetry that passes through the _____ and has endpoints on the parabola.
- > To recognize that the equation of a conic is a parabola, notice that there is

Write the standard form of the equation for each parabola. Find and graph all of the requested information.

1. $y = x^2 - 12x + 3$	0
------------------------	---

Opens:

Vertex:

AOS:

Focus:

Directrix:

LR:

Find the standard equation of the parabola; then find the coordinates of the vertex. Determine if the graph of the parabola will be a function.

5.
$$y^2 + 2y - x + 6 = 0$$

Homework: Page 668 #s 37-42, 44, 63, 66, 70