Definition of Limit [c, L are real numbers]: as x approaches c, the limit of f(x) equals $\lim_{x \to c} f(x) = L$

	_ •
Method 1: Graphing	Examples
Approaching from BOTH the left and right f_{i}	
side of x = c, follow the graph of the function towards the value of c.	
What does the y-value "approach" as the	
function approaches the given x-value?	
, , , ,	
Any value of the function at $x = c$ does not	
affect whether there is a limit.	
Method 2: Table of Values	Examples
What does the y-value "approach" as the	
function approaches the given x-value?	
Any value of the function at $x = c$ does not	
affect whether there is a limit.	
<u>x y</u>	
One-Sided Limits	Examples
<u>One-Sided Limits: [</u> c, L are real numbers]	
as <i>x approaches c</i> from left OR right, the	
limit of <i>f(x)</i> equals <i>L</i>	
Left-handed limit: Right-handed limit:	
$\lim_{x \to c^-} f(x) = L \qquad \lim_{x \to c^+} f(x) = L$	
$\lim_{x \to \infty} f(x) - I_{x} + \dots + \dots$	
$\lim_{x \to c} f(x) = L$ if and only if	
$\lim_{x \to \infty} f(x) = L$	
$ \lim_{x \to c^+} f(x) = L $	
AND	
$\lim_{x \to c^-} f(x) = L$	
$\begin{bmatrix} 1 & 1 \\ x \rightarrow c^{-} \end{bmatrix}$	
*BOTH right and left-hand limits are equal	

Limits at Vertical Asymptotes	Examples			
Limits at VA: as x approaches c from left				
OR right, the limit of $f(x)$ equals ∞ or $-\infty$				
Limit from left:				
$\lim_{x \to c^{-}} f(x) = \infty \text{ or } -\infty$				
Limit from right:				
$\lim_{x \to c^+} f(x) = \infty \text{ or } -\infty$				
Limits at Infinity	Examples			
Limits at Infinity: as x approaches ∞ or $-\infty$, the limit of $f(x)$ equals L	•			
$\lim_{x \to \infty} f(x) = L_{\text{OR}} \lim_{x \to -\infty} f(x) = L$				
Limits of a function at infinity can				
approach a number, ∞ or - ∞				
Limits that fail to exist (DNE)	Examples			
1. <i>f(x)</i> approaches different limits from left and right				
2. function oscillates between 2 numbers an infinite number of times				
Properties of Limits Given: Limits L and	M are real numbers, c and k are real numbers $\lim f(x) = L$ and			
$\lim_{x \to c} g(x) = M$				
1. Sum Rule: $\lim_{x \to c} f(x) + g(x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$	f(x) = L + M			
1. <u>Sum Rule</u> : $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L + M$				
2. <u>Difference Rule</u> : $\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = L - M$				
3. <u>Product Rule</u> : $\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L \cdot M$				
4. <u>Constant Multiple Rule</u> : $\lim_{x \to c} k \cdot f(x) = k \cdot \lim_{x \to c} f(x) = k \cdot L$				
5. <u>Quotient Rule</u> : $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M}, M \neq 0$				
6. <u>Power Rule</u> : $\lim_{x \to c} [f(x)]^{r'_s} = \left[\lim_{x \to c} f(x)\right]^{r'_s} = L^{r'_s}, \text{ if } r'_s \text{ is real, r and s are integers, } s \neq 0$				

Algebraic Method 1: Direct Substit	ution		Examples			
$\lim_{x \to c} f(x) = f(c)$						
-polynomial functions (linear, quad, cubic, etc)						
-easy radical functions						
-exponential functions -rational functions when denominat	or≠0					
-when c is in the domain						
Algebraic Method 2: Rational Functions			Examples			
-Use when you have a rational function						
-use when you substitute and you ge	et $\frac{0}{0}$					
-simplify the fraction	-					
*dividing out method OR LCD						
-substitute into simplified fraction						
Algebraic Method 3: Rationalize the			Examples			
Numerator						
-Use when you have a radical function						
-use when you substitute and						
denominator = 0 -multiply top and bottom by conjugate of						
top						
-simplify (original denominator will						
reduce out)						
-substitute into simplified fraction						
Special Methods						
Right and Left- Hand –instead of		<u>ehavior Model -</u> without	<u>"Significant Parts</u> (made up this			
graphing - use for limits as $x \rightarrow c$, not at	graph	-	name) -without graphing			
infinity	-use for limits c as $x \rightarrow \infty$ or $-\infty$ -use for rational functions form		-without graphing -use for limits at infinity as $x \rightarrow \infty$ or			
-use for point of discontinuity or	p(x)/q(x)					
VA	-find the horizontal or slant		-use for functions with separate			
-piecewise function, absolute	asymptote		"parts"			
value in fraction	 Write function as a single fraction 		1. Check each part of the function			
1. Approaching from left and right,	2. Long divide to find asymptote		1. Check each part of the function. Does it increase, decrease, or			
substitute numbers closer and	3. The end behavior of the		approach 0 as x approaches ∞ or -			
closer to <i>c</i>	asymptote models the end		∞?			
2. Limit is ∞ , - ∞ , or DNE		vior of the function	2. Which part is significant and			
		: Limit is a number or 0 nt: Limit is ∞ or - ∞	affects the limit?			
	JIDI	The limit is $0.01 - 0.01$				