\qquad

Definition of Limit [c, L are real numbers]: as x approaches c, the limit of $f(x)$ equals $L \lim _{x \rightarrow c} f(x)=L$

Method 1: Graphing	Examples
Approaching from BOTH the left and right side of $x=c$, follow the graph of the function towards the value of c. What does the y-value "approach" as the function approaches the given x-value? Any value of the function at $x=c$ does not affect whether there is a limit.	
Method 2: Table of Values	Examples
What does the y-value "approach" as the function approaches the given x-value? Any value of the function at $x=c$ does not affect whether there is a limit.	
One-Sided Limits	Examples
One-Sided Limits: [c, L are real numbers] as x approaches c from left OR right, the limit of $f(x)$ equals L $\begin{array}{ll} \underline{\text { Left-handed limit: }} \\ \lim _{x \rightarrow c^{-}} f(x)=L & \text { Right-handed limit: } \\ \lim _{x \rightarrow c^{+}} f(x)=L \end{array}$ $\begin{array}{rl} \lim _{x \rightarrow c} & f(x)=L_{\text {if and only if }} \\ \left\{\begin{array}{l} \lim _{x \rightarrow c^{+}} f(x)=L \\ \text { AND } \\ \lim _{x \rightarrow c^{-}} f(x)=L \end{array}\right. \end{array}$ *BOTH right and left-hand limits are equal	

Limits at Vertical Asymptotes
$\frac{\text { Limits at VA: as } x \text { approaches } c \text { from }}{\text { OR right, the limit of } f(x) \text { equals } \infty \text { or }}$
$\frac{\text { Limit from left: }}{\lim _{x \rightarrow c^{-}} f(x)=\infty \text { or }-\infty}$

Limit from right:

$$
\lim _{x \rightarrow c^{+}} f(x)=\infty \text { or }-\infty
$$

Limits at Infinity	Examples
Limits at Infinity: as x approaches ∞ or $-\infty$, the limit of $f(x)$ equals L	
$\lim _{x \rightarrow \infty} f(x)=L$ OR $\lim _{x \rightarrow-\infty} f(x)=L$	
Limits of a function at infinity can approach a number, ∞ or $-\infty$	
Limits that fail to exist (DNE)	
1. $f(x)$ approaches different limits from left and right	
2. function oscillates between 2 numbers an infinite number of times	

Properties of Limits Given: Limits L and M are real numbers, c and k are real numbers $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$

1. Sum Rule: $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L+M$
2. Difference Rule: $\lim _{x \rightarrow c}[f(x)-g(x)]=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)=L-M$
3. Product Rule: $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)=L \cdot M$
4. Constant Multiple Rule: $\lim _{x \rightarrow c} k \bullet f(x)=k \cdot \lim _{x \rightarrow c} f(x)=k \cdot L$
5. Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{L}{M}, M \neq 0$
6. Power Rule: $\lim _{x \rightarrow c}[f(x)]^{r / s}=\left[\lim _{x \rightarrow c} f(x)\right]^{r / s}=L^{r / s}$, if r / s is real, r and s are integers, $\mathrm{s} \neq 0$

Algebraic Method 1: Direct Substitu	tion	Examples	
```\[ \lim _{x \rightarrow c} f(x)=f(c) \] \\ -polynomial functions (linear, quad, cubic, etc) \\ -easy radical functions -exponential functions -rational functions when denominator \(\neq 0\) -when c is in the domain```			
Algebraic Method 2: Rational Funct		Examples	
-Use when you have a rational function -use when you substitute and you get $\frac{0}{0}$ -simplify the fraction   *dividing out method OR LCD -substitute into simplified fraction			
Algebraic Method 3: Rationalize Numerator		Examples	
-Use when you have a radical function -use when you substitute and denominator $=0$   -multiply top and bottom by conjugate of top   -simplify (original denominator will reduce out) -substitute into simplified fraction			
Special Methods			
Right and Left- Hand -instead of graphing   - use for limits as $x \rightarrow c$, not at infinity -use for point of discontinuity or VA -piecewise function, absolute value in fraction   1. Approaching from left and right, substitute numbers closer and closer to c   2. Limit is $\infty,-\infty$, or DNE	End Behavior Model - without graphing   -use for limits c as $x \rightarrow \infty$ or $-\infty$ -use for rational functions form $p(x) / q(x)$   -find the horizontal or slant asymptote   1. Write function as a single fraction   2. Long divide to find asymptote   3. The end behavior of the asymptote models the end behavior of the function HA: Limit is a number or 0 Slant: Limit is $\infty$ or $-\infty$		"Significant Parts" (made up this name)   -without graphing   -use for limits at infinity as $x \rightarrow \infty$ or $-\infty$   -use for functions with separate "parts"   1. Check each part of the function. Does it increase, decrease, or approach 0 as x approaches $\infty$ or $\infty$ ?   2. Which part is significant and affects the limit?

