Precalculus

6.3 Vectors in the Plane - Day 1

A vector is a directed distance or quantity that has both magnitude (length) and direction. It is geometrically represented by a directed line segment.

Vectors can be represented algebraically using ordered pairs. For example, the ordered pair $\langle 1,2\rangle$ represents the vector from the origin to the point at $(1,2)$.

The initial point of a vector can be any point in the plane, not just the origin. For example, ALL of the vectors in the coordinate plane at the right can be represented by $\langle 1,2\rangle$.

Notation: Vectors are denoted with one-tailed arrows above the letter. ie: \vec{w}

Point A is the \qquad point, which is the starting point of the vector.

Point B is the \qquad point, which is the endpoint point of the vector.

Draw the horizontal \& vertical components of this vector $\overline{A B}$.
Notice you have now formed a right triangle! We can find the magnitude (length) of the resultant vector by using the Pythagorean Theorem.

Suppose $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are the initial (starting) and terminal (ending) points of a vector:

- The component form that represents $\overline{P Q}$ is $\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$.
- The magnitude of $\overrightarrow{P Q}$ is given by $\|\overrightarrow{P Q}\|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Example 1: Find the component form that represents the vector from $C(7,-3)$ to $D(-2,-1)$, then find the magnitude of the vector.

Resultant Vector:	The sum or difference of two vectors	
Vector Operations:	Addition:	$\vec{a}+\vec{b}=\left\langle a_{1}, a_{2}\right\rangle+\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle$
	Subtraction:	$\vec{a}-\vec{b}=\left\langle a_{1}, a_{2}\right\rangle-\left\langle b_{1}, b_{2}\right\rangle=\left\langle a_{1}-b_{1}, a_{2}-b_{2}\right\rangle$
	Scalar Multiplication: $\quad k \vec{a}=\left\langle k a_{1}, k a_{2}\right\rangle$	

Example 2: If $\vec{u}=\langle 1,-4\rangle$ and $\vec{v}=\langle 0,8\rangle$, find:
a. $\vec{u}+\bar{v}$
b.
$\vec{u}-\vec{v}$
c. $\quad \frac{1}{2} \bar{V}$

Geometric Vectors: Illustrate vector operations by drawing the vectors and their resultant on the coordinate plane. There are two methods: the tip-to-tail method and the parallelogram method.
Use the figure to sketch a graph of the specified vector.

Example 3:

a. $2 \bar{v}$

b. $\quad 2 \vec{v}+\vec{u}$

c. $\vec{u}-\bar{v}$

Example 4: $\quad \vec{v}=\langle-2,2\rangle$ and $\vec{w}=\langle 3,4\rangle$. Algebraically find the resultant vector and magnitude, then draw the vectors and illustrate the resultant geometrically.
a.
d. $\quad 2 \bar{v}-3 \bar{w}$
c. $\quad \vec{v}+2 \vec{w}$

b. $\vec{w}-\vec{v}$

Linear Combination of Unit Vectors

Any vector $\bar{v}=\left\langle v_{1}, v_{2}\right\rangle$ can be expressed as $v_{1} \vec{i}+v_{2} \bar{j}$. That is, any vector that is represented by an ordered pair can also be written as the Linear Combination of Unit Vectors. The scalars v_{1} and v_{2} are the \qquad and \qquad components of \vec{v}.
Example 5: Write $A B$ as a linear combination of unit vectors given that the initial point for this vector is $A(2,-1)$ and the terminal point is $B(-1,5)$.

Example 6: Use vector operations to find the following. Let $\vec{u}=\vec{i}+\vec{j}$ and $\vec{v}=5 \vec{i}-3 \vec{j}$.
a. $2 \vec{u}-3 \vec{v}$
b. $\quad 4 \vec{u}+\frac{1}{2} \stackrel{\rightharpoonup}{v}$

