Precalculus

6.3 Vectors in the Plane - Day 2

Magnitude:	Length of a vector
Direction angle:	The angle the vector makes with the positive x-axis.

Example 1: \vec{v} has a magnitude of 3 cm and a direction angle of $40^{\circ} . \vec{w}$ has a magnitude of 5 cm and a direction angle of 150°. Use the tip-to-tail AND the parallelogram method to find the magnitude and the direction angle of the resultant vector of $\vec{u}+\vec{v}$.

Tip-to-tail Method	Parallelogram Method
Magnitude	

Example 2: Use the given characteristics of the vectors to find the magnitude and the direction angle of the resultant vector of $2 \bar{u}+\bar{v}$. Use the tip-to-tail method $O R$ the parallelogram method.
$\|\vec{u}\|=1.5 \mathrm{~cm}$, \vec{u} has a direction angle of 45°
$\|\bar{v}\|=2 \mathrm{~cm}, \vec{v}$ has a direction angle of 100°

Solve each of the following. Round answers to the nearest hundredth.
Example 3: A plane flies due west at 250 kilometers per hour while the wind blows south at 70 kilometers per hour. Find the plane's resultant velocity and bearing.

Example 4: A plane flies east for 200 kilometers, then 30° east of south for 80 kilometers. Find the plane's distance travelled and bearing from it starting point.

Example 5: One force of 100 units acts on an object. Another force of 80 units acts on the same object at a 40° angle from the first force. Find the magnitude and direction of the resultant force on the object.

