Name:

_

Pre-Calculus - Unit 5 - Exponentials and Logarithms

5.1 Basics of Exponentials and Logarithms

Write in exponential form.

<i>1.</i> 6 =	= log ₂ 64		3. $3 = \log_b 27$			
<i>2.</i> 2 =	$\log_9 x$		4. $\log_5 125 = y$			
	ogarithmic form.			,		
5. $5^4 = 625$			8. $15^2 = x$			
6. $5^{-3} = \frac{1}{125}$			9. $b^3 = 343$			
$7. \sqrt[3]{64} = 4$			10.	$8^{y} = 300$		
Evaluate.						
11.	log ₇ 49	16.	log ₁₁ 11	22.	10 ^{log 53}	
12.	log ₃ 27	17.	log ₆ 1	23.	log ₆ 17	
13.	$\log_6 \sqrt{6}$	18.	$\log_4 4^5$	24.	log ₁₆ 57.2	
14.	$\log_3 \frac{1}{9}$	19.	7 ^{log₇ 23}	25.	log _{0.3} 19	
15.	log ₈₁ 9	20.	log 1000	26.	$\log_{\pi} 400$	
		21.	log 10 ⁸			
Solve for t	the variable.					

27. $\log_7(x+2) = -2$ 28. $\log_5 x = 3$

5.2 Properties of Exponentials and Logarithms

Expand.

1. $\log_8(13 \cdot 7)$	8. $\log_b x^7$	15.ln \sqrt{ex}
2. $\log_9(9x)$	9. $\log M^{-8}$	16.log ₅ $\sqrt{\frac{x}{y}}$
3. $\log(10000x)$	10.ln $\sqrt[7]{x}$	$100005\sqrt{y}$
4. $\log_9\left(\frac{9}{x}\right)$	$11.\log_b(xy^3)$	$17.\log_b\left(\frac{\sqrt[3]{xy^4}}{z^5}\right)$
5. $\log\left(\frac{x}{100}\right)$	$12.\log_5\left(\frac{\sqrt{x}}{25}\right)$	$18.\log_2 \sqrt[5]{\frac{xy^4}{16}}$
6. $\log_5\left(\frac{125}{x}\right)$	$13.\log_8\left(\frac{64}{\sqrt{x+1}}\right)$	19.ln $\left[\frac{x^4\sqrt{x^2+3}}{(x+3)^5}\right]$
7. $\ln\left(\frac{e^4}{8}\right)$	$14.\log_b\left(\frac{x^3y}{z^2}\right)$	$20.\log\left[\frac{100x^{3}\sqrt[3]{5-x}}{3(x+7)^{2}}\right]$
		$[3(x+7)^2]$

Condense.					
$21.\log 250 + \log 4$	29.2 ln $x - \frac{1}{2} \ln y$				
$22.\ln x + \ln 3$	$30.8\ln(x+9) - 4\ln x$				
$23.\log_3 405 - \log_3 5$	$31.4 \ln x + 7 \ln y - 3 \ln z$				
$24.\log(3x+7) - \log x$	$32.\frac{1}{2}(\log_4 x - \log_4 y)$				
$25.\log x + 7\log y$	5				
$26.\frac{1}{2}\ln x + \ln y$	$33.\frac{1}{3}(\log_4 x - \log_4 y) + 2\log_4(x+1)$				
5	$34.\frac{1}{3}[5\ln(x+6) - \ln x - \ln(x^2 - 25)]$				
$27.5 \log_b x + 6 \log_b y$	$35.\log x + \log 15 + \log(x^2 - 4) - \log(x + 2)$				
$28.7\ln x - 3\ln y$	$55.10g_{x} + 10g_{13} + 10g(x - 4) - 10g(x + 2)$				

Evaluate to 4 decimal places.

36.log ₆ 17	38.log _{0.3} 19
37.log ₁₆ 57.2	$39.\log_{\pi} 400$

5.3 Solving Exponential and Logarithmic Equations

Solve each exponential equation.

1. $6^{x-2} = 6^{3x-4}$	8. $7^{2x+4} = \left(\frac{1}{49}\right)^{x-3}$	$16.7^{x+2} = 410$
2. $8^{x-1} = \left(\frac{1}{4}\right)^{1-x}$	9. $8^{2x-2} = 4^{2-x}$	$17.3^{\frac{x}{7}} = 0.2$
3. $5^{x-2} = \frac{1}{125^x}$	$10.10^x = 3.91$	$18.e^{4x} - 5e^{2x} - 24 = 0$
4. $4^{5-x} = 128$	$11.e^x = 5.7$	$19.e^{2x} - 2e^x - 3 = 0$
	$12.5^{x} = 17$	$20.e^{4x} + 5e^{2x} - 24 = 0$
5. $3^{x-1} = (\sqrt{3})^{x+1}$	$13.5e^x = 23$	$21.e^{4x} - 3e^{2x} - 18 = 0$
6. $125^{x-1} = \left(\frac{1}{5}\right)^{1-2x}$	$14.e^{1-5x} = 793$	$22.3^{2x} + 3^x - 2 = 0$
7. $2^{3x-1} = 4^{x+2}$	$15.e^{5x-3} - 2 = 10476$	$23.2^{2x} + 2^x - 12 = 0$

5.4 Applications of Exponentials and Logarithms.

- 1. Suppose that the value of a computer depreciates at a rate of 25% per year. Determine the value of a laptop computer two years after it was purchased for \$3,750.
- 2. Mexico has a population of about 100 million people, and it is estimated that the population will double in 21 years. If population growth continues at the same rate, estimate the population I 30 years?

- 3. A researcher estimates the initial population of honeybees in a colony to be 500. If the bees are increasing at a rate of 14% per week, what is the expected population in 22 weeks?
- 4. If a farmer uses 25 pounds of insecticide, assuming its half-life is 12 years, how many pounds will still be active after 5 years? After 20 years?
- 5. Carol won \$5,000 in a raffle. She would like to invest her winnings in a money market account that provides an APR of 6% compounded quarterly. Does she have to invest all of it in order to have \$9,000 at the end of 10 years? Show work to explain your answer.
- 6. Mike would like to have \$20,000 cash for a new car 5 years from now. How much should be placed in an account now if that account pays 9.75% compounded weekly?
- 7. If you invest \$7,500 in an account paying 8.35% compounded continuously, how much money will be in the account at the end of 12 years?
- 8. Compare the balance after 30 years of a \$15,000 investment earning 12% interest compounded continuously to the same investment compounded quarterly.
- 9. Ana is trying to save for a new house. How many years, to the nearest year, will it take Ana to triple the money in her account if it is invested at 7% compounded annually?
- 10.At what annual percentage rate (to the nearest hundredth of a percent) compounded continuously will \$6,000 have to be invested to amount to \$11,000 in 8 years?
- 11. How many years, to the nearest year, will it take for the balance of an account to double if it is gaining 6% interest compounded semi-annually?
- 12.If the world population is about 6 billion people now and if the population grows continuously at an annual rate of 1.7%, what will the population be (to the nearest billion) in 10 years from now?

5.5 Exponentials and Logarithms Review

Graph the following functions by showing a series of transformations.

1.
$$f(x) = -2^{x+3}$$

Express as a logarithm.

3.
$$6^{-3} = \frac{1}{216}$$

4. $27^{\frac{4}{3}} = 81$

Express as an exponent.

5. $\log_b x = w$ 6. $\log_4 \frac{1}{256} = -4$

Find each logarithm.

log₃ 27
log₉ 81
log₁ 81
log₁ 21/16

Solve for x.

 $11.\log_{x} 16 = 4$ $12.\log_{8} 4 = x$ $13.\log_{8} x = -\frac{4}{3}$

2.
$$f(x) = 2\log_3(x+2) - 1$$

- $14.\log_{\sqrt{5}} x = 4$ $15.\log_{25} 125 = x$ $16.\log_{x} 27 = \frac{3}{4}$ $17.\log_{2}(3x - 4) = 3$ $18.\ln x = 2$
- Solve each equation. $19.\log_{8}(3x + 7) = \log_{8}(7x + 4)$ $20.\log_{4}(2x - 1) = \log_{4} 16$ $21.\log_{10}\sqrt{10} = x$ $22.\log_{7}(8x + 20) = \log_{7}(x + 6)$ $23.\log_{12}(x - 9) = \log_{12}(3x - 13)$ $24.\log_{5}(x^{2} - 30) = \log_{5} 6$

Write as a single logarithm. $25.\log_2 a + \log_2 b + \log_2 c$ $26.3\log_b 2a$ $27.2\log_5 x - 3\log_5 y$ $28.(2\log_x 3 + \log_x 6) - \log_x 2y$ Write in expanded form. Simplify. $29.\log_5(ab)^3$ $39.\log_2(\log_2(\log_2 16))$ $40.\log_3(\log_3(\log_3 27))$ $30.\log_6 \frac{\sqrt{a}}{h}$ $41.\log_{36} 6 \cdot \log_{36} 6$ Solve for x. 42.10 $\log_{10} 12 - \log_{10} 2$ $31.\log_5 x = 2\log_5 10$ 43.8^{3 log₈ 3-log₈ 5} $32.\log x = \log 10 - \log 5$ $44.e^{\ln 4x} = \ln 9.4$ $33.\log x = \frac{1}{2}\log 81 - \frac{1}{3}\log 27$ $45.\ln e^{1.32x} = 5.8$ $34.2 \log_5 x = \log_5 12 + \log_5 75$ $46.x = \log_8 84.3$ $47.2500 = 4e^{0.58x}$ $35.\log_7 x = 4\log_7 2 + (\log_7 3 - \log_7 6)$ $36.\log 3x = \log 12 + 2(\log 5 - \log 2)$ $48.\ln x = -6.5$ $37.\log_3 x + \log_3(x-8) = 2$ $49.\frac{1}{2^{x}} = 12$ $38.\log_2(x+3) = \log_2(x-3) = 4$

- 50.If \$750 is invested at 8% annual interest that is compounded monthly when will the investment be worth \$1600?
- 51.John's new house in Apex is valued at \$105,000. The area he lives in has had a steady rate of appreciation for homes of 12% per year. At this steady rate, when will his house be worth ½ million dollars?
- 52.If \$50 is invested at 8% annual interest that is compounded continuously when will the investment be worth \$200?
- 53.A certain bacteria can grow from 40 to 185 in 3.5 hours. Find the constant k for the bacteria.
- 54.A piece of office equipment worth \$8500 depreciates at 9% per year for the first ten years. At this rate when will the piece of equipment be worth \$5000?
- 55.A radioactive element has a half-life of 10 hours. If you have 300 g of the element initially, how much remains after 25 hours?