Name:

Pre-Calculus - Unit 5 - Exponentials and Logarithms

5.1 Basics of Exponentials and Logarithms

Write in exponential form.

1. $6=\log _{2} 64$
2. $2=\log _{9} x$
3. $3=\log _{b} 27$
4. $\log _{5} 125=y$

Write in logarithmic form.
5. $5^{4}=625$
6. $5^{-3}=\frac{1}{125}$
7. $\sqrt[3]{64}=4$
8. $15^{2}=x$
9. $b^{3}=343$
10. $\quad 8^{y}=300$

Evaluate.

11.	$\log _{7} 49$	16.	$\log _{11} 11$	22.	$10^{\log 53}$
12.	$\log _{3} 27$	17.	$\log _{6} 1$	23.	$\log _{6} 17$
13.	$\log _{6} \sqrt{6}$	18.	$\log _{4} 4^{5}$	24.	$\log _{16} 57.2$
14.	$\log _{3} \frac{1}{9}$	19.	$7^{\log _{7} 23}$	25.	$\log _{0.3} 19$
15.	$\log _{81} 9$	20.	$\log 1000$	26.	$\log _{\pi} 400$
		21.	$\log 10^{8}$		

Solve for the variable.
27. $\log _{7}(x+2)=-2$ 28. $\log _{5} x=3$

5.2 Properties of Exponentials and Logarithms

 Expand.1. $\log _{8}(13 \cdot 7)$
2. $\log _{b} x^{7}$
3. $\ln \sqrt{e x}$
4. $\log _{9}(9 x)$
5. $\log M^{-8}$
6. $\log (10000 x)$
7. $\ln \sqrt[7]{x}$
8. $\log _{5} \sqrt{\frac{x}{y}}$
9. $\log _{9}\left(\frac{9}{x}\right)$
10. $\log _{b}\left(x y^{3}\right)$
11. $\log _{b}\left(\frac{\sqrt[3]{x} y^{4}}{z^{5}}\right)$
12. $\log \left(\frac{x}{100}\right)$
13. $\log _{5}\left(\frac{\sqrt{x}}{25}\right)$
14. $\log _{5}\left(\frac{125}{x}\right)$
15. $\log _{8}\left(\frac{64}{\sqrt{x+1}}\right)$
16. $\ln \left(\frac{e^{4}}{8}\right)$
17. $\log _{b}\left(\frac{x^{3} y}{z^{2}}\right)$
$18 . \log _{2} \sqrt[5]{\frac{x y^{4}}{16}}$
18. $\ln \left[\frac{x^{4} \sqrt{x^{2}+3}}{(x+3)^{5}}\right]$
19. $\log \left[\frac{100 x^{3} \sqrt[3]{5-x}}{3(x+7)^{2}}\right]$

Condense.
21. $\log 250+\log 4$
$29.2 \ln x-\frac{1}{2} \ln y$
$22 \cdot \ln x+\ln 3$
$23 . \log _{3} 405-\log _{3} 5$
$30.8 \ln (x+9)-4 \ln x$
$24 . \log (3 x+7)-\log x$
$25 . \log x+7 \log y$
26. $\frac{1}{3} \ln x+\ln y$
$27.5 \log _{b} x+6 \log _{b} y$
$28.7 \ln x-3 \ln y$
$31.4 \ln x+7 \ln y-3 \ln z$
32. $\frac{1}{3}\left(\log _{4} x-\log _{4} y\right)$
33. $\frac{1}{3}\left(\log _{4} x-\log _{4} y\right)+2 \log _{4}(x+1)$
34. $\frac{1}{3}\left[5 \ln (x+6)-\ln x-\ln \left(x^{2}-25\right)\right]$
35. $\log x+\log 15+\log \left(x^{2}-4\right)-\log (x+2)$

Evaluate to 4 decimal places.
$36 . \log _{6} 17$
$38 . \log _{0.3} 19$
$37 . \log _{16} 57.2$
$39 . \log _{\pi} 400$

5.3 Solving Exponential and Logarithmic Equations

Solve each exponential equation.

1. $6^{x-2}=6^{3 x-4}$
2. $7^{2 x+4}=\left(\frac{1}{49}\right)^{x-3}$
$16.7^{x+2}=410$
3. $8^{x-1}=\left(\frac{1}{4}\right)^{1-x}$
4. $8^{2 x-2}=4^{2-x}$
$10.10^{x}=3.91$
$17.3^{\frac{x}{7}}=0.2$
5. $5^{x-2}=\frac{1}{125^{x}}$
$18 . e^{4 x}-5 e^{2 x}-24=0$
$11 . e^{x}=5.7$
$19 . e^{2 x}-2 e^{x}-3=0$
6. $4^{5-x}=128$
7. $3^{x-1}=(\sqrt{3})^{x+1}$
$12.5^{x}=17$
$20 . e^{4 x}+5 e^{2 x}-24=0$
$13.5 e^{x}=23$
$21 . e^{4 x}-3 e^{2 x}-18=0$
8. $125^{x-1}=\left(\frac{1}{5}\right)^{1-2 x}$
$14 . e^{1-5 x}=793$
$22.3^{2 x}+3^{x}-2=0$
9. $2^{3 x-1}=4^{x+2}$
$15 . e^{5 x-3}-2=10476$
$23.2^{2 x}+2^{x}-12=0$

5.4 Applications of Exponentials and Logarithms.

1. Suppose that the value of a computer depreciates at a rate of 25% per year. Determine the value of a laptop computer two years after it was purchased for $\$ 3,750$.
2. Mexico has a population of about 100 million people, and it is estimated that the population will double in 21 years. If population growth continues at the same rate, estimate the population 130 years?
3. A researcher estimates the initial population of honeybees in a colony to be 500 . If the bees are increasing at a rate of 14% per week, what is the expected population in 22 weeks?
4. If a farmer uses 25 pounds of insecticide, assuming its half-life is 12 years, how many pounds will still be active after 5 years? After 20 years?
5. Carol won $\$ 5,000$ in a raffle. She would like to invest her winnings in a money market account that provides an APR of 6% compounded quarterly. Does she have to invest all of it in order to have $\$ 9,000$ at the end of 10 years? Show work to explain your answer.
6. Mike would like to have $\$ 20,000$ cash for a new car 5 years from now. How much should be placed in an account now if that account pays 9.75% compounded weekly?
7. If you invest $\$ 7,500$ in an account paying 8.35% compounded continuously, how much money will be in the account at the end of 12 years?
8. Compare the balance after 30 years of a $\$ 15,000$ investment earning 12% interest compounded continuously to the same investment compounded quarterly.
9. Ana is trying to save for a new house. How many years, to the nearest year, will it take Ana to triple the money in her account if it is invested at 7\% compounded annually?
10. At what annual percentage rate (to the nearest hundredth of a percent) compounded continuously will $\$ 6,000$ have to be invested to amount to $\$ 11,000$ in 8 years?
11. How many years, to the nearest year, will it take for the balance of an account to double if it is gaining 6% interest compounded semi-annually?
12.If the world population is about 6 billion people now and if the population grows continuously at an annual rate of 1.7%, what will the population be (to the nearest billion) in 10 years from now?

5.5 Exponentials and Logarithms Review

Graph the following functions by showing a series of transformations.

1. $f(x)=-2^{x+3}$

Express as a logarithm.
3. $6^{-3}=\frac{1}{216}$
4. $27^{\frac{4}{3}}=81$

Express as an exponent.
5. $\log _{b} x=w$
6. $\log _{4} \frac{1}{256}=-4$

Find each logarithm.
7. $\log _{3} 27$
8. $\log _{9} 81$
9. $\log _{\frac{1}{3}} 81$
$10 \cdot \log _{\frac{1}{2}} \frac{1}{16}$
Solve for x .
11. $\log _{x} 16=4$
$12 \cdot \log _{8} 4=x$
$13 . \log _{8} x=-\frac{4}{3}$
2. $f(x)=2 \log _{3}(x+2)-1$

$14 \cdot \log _{\sqrt{5}} x=4$
$15 \cdot \log _{25} 125=x$
$16 \cdot \log _{x} 27=\frac{3}{4}$
17. $\log _{2}(3 x-4)=3$
$18 . \ln x=2$
Solve each equation.
$19 . \log _{8}(3 x+7)=\log _{8}(7 x+4)$
20. $\log _{4}(2 x-1)=\log _{4} 16$
21. $\log _{10} \sqrt{10}=x$
22. $\log _{7}(8 x+20)=\log _{7}(x+6)$
23. $\log _{12}(x-9)=\log _{12}(3 x-13)$
24. $\log _{5}\left(x^{2}-30\right)=\log _{5} 6$

Write as a single logarithm.
25. $\log _{2} a+\log _{2} b+\log _{2} c$
$26.3 \log _{b} 2 a$
$27.2 \log _{5} x-3 \log _{5} y$
28. $\left(2 \log _{x} 3+\log _{x} 6\right)-\log _{x} 2 y$

Write in expanded form.
29. $\log _{5}(a b)^{3}$
$30 . \log _{6} \frac{\sqrt{a}}{b}$
Solve for x .
$31 \cdot \log _{5} x=2 \log _{5} 10$
32. $\log x=\log 10-\log 5$
33. $\log x=\frac{1}{2} \log 81-\frac{1}{3} \log 27$
$34.2 \log _{5} x=\log _{5} 12+\log _{5} 75$
$35 \cdot \log _{7} x=4 \log _{7} 2+\left(\log _{7} 3-\log _{7} 6\right)$
$36 \cdot \log 3 x=\log 12+2(\log 5-\log 2)$
37. $\log _{3} x+\log _{3}(x-8)=2$
$38 . \log _{2}(x+3)=\log _{2}(x-3)=4$

Simplify.
$39 \cdot \log _{2}\left(\log _{2}\left(\log _{2} 16\right)\right)$
$40 \cdot \log _{3}\left(\log _{3}\left(\log _{3} 27\right)\right)$
$41 . \log _{36} 6 \cdot \log _{36} 6$
$42.10^{\log _{10} 12-\log _{10} 2}$
$43.8^{3 \log _{8} 3-\log _{8} 5}$
44. $e^{\ln 4 x}=\ln 9.4$
$45 \cdot \ln e^{1.32 x}=5.8$
$46 . x=\log _{8} 84.3$
$47.2500=4 e^{0.58 x}$
$48 . \ln x=-6.5$
49. $\frac{1}{3^{x}}=12$
50.If $\$ 750$ is invested at 8% annual interest that is compounded monthly when will the investment be worth $\$ 1600$?
51.John's new house in Apex is valued at $\$ 105,000$. The area he lives in has had a steady rate of appreciation for homes of 12% per year. At this steady rate, when will his house be worth $1 / 2$ million dollars?
52.If $\$ 50$ is invested at 8% annual interest that is compounded continuously when will the investment be worth $\$ 200$?
53.A certain bacteria can grow from 40 to 185 in 3.5 hours. Find the constant k for the bacteria.
54.A piece of office equipment worth $\$ 8500$ depreciates at 9% per year for the first ten years. At this rate when will the piece of equipment be worth $\$ 5000$?
55.A radioactive element has a half-life of 10 hours. If you have 300 g of the element initially, how much remains after 25 hours?

