$\qquad$

## Polynomials and Rationals

### 6.1 Graphing Polynomials

For each of the following functions:
a. Use the Leading Coefficient Test to determine the polynomial function's end behavior.
b. Find the $x$-intercepts by setting the function $=0$ and factoring.
c. Determine each solution's multiplicity and state if it touches the $x$-axis and turns around or crosses the x -axis.
d. Determine the y-intercept of each polynomial function.
e. Sketch the graph of the polynomial function.

1. $f(x)=-x^{4}+4 x^{2}$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept

2. $f(x)=x^{3}+2 x^{2}-x-2$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept

3. $f(x)=x^{3}+x^{2}-4 x-4$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept
4. $f(x)=x^{4}-6 x^{3}+9 x^{2}$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept
5. $f(x)=x^{4}-2 x^{3}+x^{2}$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept


### 6.2 More Graphing Polynomials

1. $f(x)=-2 x^{4}+4 x^{3}$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept

2. $f(x)=x^{3}+x^{2}-5 x+3$
a. End Behavior
b. x-intercepts
c. Multiplicity
d. Y-intercept

3. Sketch the graph described and create a polynomial function with these characteristics.

- The graph passes through the x-axis at $x=0$.
- The graph bounces on the x -axis at $x=-3$.
- As $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow \infty$.

4. Sketch the graph described and create a polynomial function with these characteristics.

- The graph passes through the $x$-axis at $x=2$ and $x=-4$.
- The graph bounces on the $x$-axis at $x=1$.
- As $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$.


### 6.3 Graphing Rationals

For each function below:
a. Find the values of $x$ which must be excluded from the domain.
b. Find any holes, vertical, horizontal, and/or slant asymptotes.
c. Use intercepts, asymptotes, and other points to sketch the graphs.

1. $f(x)=\frac{4}{x-5}$

2. $f(x)=\frac{x-1}{x^{2}+3 x-4}$

3. $f(x)=\frac{2}{x^{2}+3 x-10}$

4. $f(x)=\frac{x^{2}-4 x+3}{x^{2}-x-6}$

5. $f(x)=\frac{x^{2}+2 x-15}{x-3}$

6. $f(x)=\frac{x^{2}-x-6}{x^{2}+3 x+2}$


### 6.4 More Graphing Rationals

For each function below:
a. Find the values of $x$ which must be excluded from the domain.
b. Find any holes, vertical, horizontal, and/or slant asymptotes.
c. Use intercepts, asymptotes, and other points to sketch the graphs.

1) $f(x)=\frac{x-1}{x^{2}+3 x+2}$


2) $g(x)=\frac{2 x^{2}}{x^{2}+x-12}$

3) $f(x)=\frac{3 x-2}{x+3}$

4) $p(x)=\frac{(x+8)(x-3)}{(x-5)\left(x^{2}+7 x+12\right)}$

5) $g(x)=\frac{1}{x(x+1)^{2}}$

6) Write the equation of the rational function having these characteristics.
a) vertical asymptotes at $x=4$ and $x=-1$
b) $x$ intercepts at $(3,0),(-2,0)$
c) horizontal asymptote at $y=2 / 3$
d) $y$ intercept at $(0,1)$
7) Divide using long division: $\left(3 x^{3}+4 x-1\right) /\left(x^{2}+1\right)$

### 6.5 Polynomial and Rational Functions Review

I. Given the following functions, answer the questions below. If none, write none.
$\mathrm{R}(\mathrm{x})=\frac{x+1}{x(x-3)}$
$\mathrm{P}(\mathrm{x})=\frac{x+1}{(x-1)^{2}}$
$\mathrm{S}(\mathrm{x})=\frac{x^{2}-2 x-15}{2(x+3)(x-1)}$
$\mathrm{Q}(\mathrm{x})=\frac{x-7}{x^{2}-49}$
a. Which graph(s) has/have two vertical asymptotes?
b. Which graph(s) has/have a hole? $\qquad$
c. Which graph(s) has/have only one x-intercept?
d. Which graph(s) has/have a horizontal asymptote at $\mathbf{y}=\mathbf{0}$ ?
e. Which graph has two numbers excluded from the domain?
II. Graph the following. Show all your work below. Make the graph neat. Clearly mark all points.

$$
\mathrm{R}(\mathrm{x})=\frac{x}{x+2} \quad \mathrm{P}(\mathrm{x})=\frac{x-2}{x^{2}-12 x+20}
$$



III. Graph each polynomial below:
a) Use the Leading Coefficient Test to determine the polynomial function's end behavior.
b) Find the $x$-intercepts by setting the function $=0$ and factoring.
c) Determine each soln's multiplicity and state if it turns around or crosses the $x$-axis.
d) Determine the $y$-intercept of each polynomial function.

$$
f(x)=x^{4}-2 x^{3}-8 x^{2}
$$


$f(x)=x^{3}+7 x^{2}-x-7$

4. Describe the vertical asymptote(s) and hole(s) for the graph of $y=\frac{(x-5)(x-2)}{(x-2)(x+4)}$
5. Determine the horizontal asymptote of the graph of $y=\frac{6 x^{2}+5 x+9}{7 x^{2}-x+9}$
6. Write a polynomial function in standard form with zeros at -2 (multiplicity of 2 ), 3 (multiplicity of 1 ), and 4(multiplicity of 1 ) and also with a degree of 4 .
7. Write a polynomial function in standard form with zeros at $6,-3$, and 1 and also with a degree of 3 .

## Objective: Review Right Triangle Trig

8. From a sailboat, the angle of elevation to the top of a lighthouse 311 ft away is $17^{\circ}$. Find the height of the lighthouse.
9. A surveyor is standing 15 feet from the base of the Washington Monument. The surveyor measures the angle of elevation to the top of the monument as $78.3^{\circ}$. How tall is the Washington Monument?

State the quadrant in which $\theta$ lies.
10. $\sin \theta<0$ and $\cos \theta<0$
11. $\sin \theta>0$ and $\tan \theta<0$
12. $\sin \theta>0$ and $\cos \theta>0$
13. $\tan \theta<0$ and $\sec \theta>0$

