6.1 PROPERTIES OF LOGARITHMS

- Expand each logarithm. 1. $log_8 4ab^2$ Rewrite each equation in logarithmic form. 11. $3^5 = 243$ 2. $log_2(cd)^3$
 - 3. $log_3 \frac{7}{n^3}$
 - 4. $log \frac{w^5 x}{v z^9}$

Condense each expression into a single logarithm.

- 5. log3 log8
- 6. $3log_4x + log_4y$
- 7. $log_5 2 + 6log_5 k 3log_5 m$
- 8. $5log_3x \cdot log_3y$

9. $4(log_3a + log_3b)$

- 10. $2(log_92 + log_9x) 3(log_93 + log_9y)$ 20. log 2
 - 21. 6^{log}₆7
 - 22. log₆52

- - 12. $81 = 243^{\frac{4}{5}}$

Rewrite each equation in exponential form.

13.
$$log_2 8 = 3$$

14.
$$log_{243}27 = \frac{3}{5}$$

Evaluate each logarithm.

15. *log*₅125

16. $log_{12}12$

17. log 10⁻²

18. *log*₇ 7⁸

19. *log*₁₆1

6.2 SOLVING EXPONENTIAL EQUATIONS

Solve each equation.

2.
$$e^{4b} = 19$$

8. $3 \cdot 11^{2c+5} = 20$

3. $7 \cdot 5^w = 21$ **9.** $7^{m+4} = 5^m$

$$4. \ 8^{h+3} = 12 \qquad \qquad 10. \ 6^a = 10^{a-2}$$

5.
$$6^{4p-1} = 18$$
 11. $6^{2x+1} = 5^{4x-5}$

6. $9^{k-5} + 4 = 27$ 12. $2^{k+8} = 10^{k-4}$

6.3 SOLVING LOGARITHMIC EQUATIONS

Solve each equation.

1.
$$log_3 x = 4$$
 5. $log(3x + 4) = 2$

- 2. $log_4(2x + 10) = 3$ 6. ln(2x + 4) = 3
- 3. $log_x 512 = 3$ 7. $log_3(3x - 6) = log_3(2x + 1)$
- 4. $log_6(4x + 9) = log_6(2x + 19)$ 8. $log_7(3x + 7) = 4$

9.
$$lnx = 3$$
 14. $log_2 x + log_2 (x + 6) = 4$

10.
$$log_x 36 = 2$$
 15. $log_3(x+10) - log_3 x = 4$

11.
$$log_5(3x + 11) = 3$$
 16. $log_7x^2 = log_7(x + 20)$

12.
$$log_5 2 + log_5 x = 3$$
 17. $lnx + lnx^2 = 8$

13.
$$log_8 4x^4 - log_8 2x^2 = 1$$

18. $log_4(x+4) + log_4(x+64) = 4$

6.5 COMPOUND INTEREST

- 1. How long does it take \$1425 to triple if it is invested at 4% interest compounded quarterly?
- 2. At what interest rate compounded continuously would you have to invest \$350 to have \$800 available in 5 years?
- 3. What amount must be invested at 5% interest compounded monthly to have \$6000 available in 10 years?
- 4. At what interest rate compounded monthly would you have to invest \$1300 to double your money in 7 years?

- 5. Emmet deposits \$650 in a savings account with 8% interest compounded quarterly. Maggie deposits the same amount in another savings account with 8.2% interest compounded semiannually. If both Emmet and Maggie leave their money in the accounts for 2 years, which account will have the greater final balance?
- 6. If \$800 is invested at 8% interest compounded continuously, how long will it take before the amount is \$900?
- 7. A laptop purchased for \$800 decreases in value by 20% each year. How long will it take before the laptop to be worth \$350?
- 8. Hugo deposits \$200 in a savings account with 0.3% interest compounded quarterly. Grace deposits the same amount in another savings account with 0.3% interest compounded semiannually. If both Hugo and Grace leave their money in the accounts for 3 years, which account will have the greater final balance?

6.6 MORE APPLICATIONS OF EXPONENTS AND LOGARITHMS

- 1. The half-life of Cesium-137 is 30.2 years. If the initial mass of the sample is 15 kg, how much will remain after 151 years?
- 2. Myerstopia has a population of 6000. After 10 years, the population has increased exponentially to 7183 people. How many people will be living in Myerstopia after 23 years?
- 3. A loaf of bread that currently sells for \$3.60 sold for \$3.10 six years ago. At what rate has the cost of the loaf of bread increased each year?
- 4. A diamond ring currently worth \$3000 increases in value by 8% each year. What is the value of the ring in 50 years?
- 5. Carbon-14 has a half-life of 5700 years. Find the age of a sample at which 22% of the radioactive nuclei originally present have decayed.
- 6. A population of 100 rabbits are living on an island. After one year, the rabbit population has increased exponentially to 500 rabbits. What will the population be after another 6 months?

- 7. Carbon-14 has a half-life of 5700 years. Consider a sample of fossilized wood that when alive would have contained 24g of C-14. It now contains 1.5g. How old is the sample?
- 8. The half-life of a radioactive element is 133 days, but your sample will not be useful to you after 65% of the radioactive nuclei originally present have disintegrated. About how many days can you use the sample?

6.7 COMBINATIONS AND COMPOSITIONS OF FUNCTIONS

If $f(x) = x^2 - 1$, g(x) = 2x - 3, and h(x) = 1 - 4x, find the following functions, as well as any values indicated.

- 1. (f g)(x) = 5. $(g \cdot h)(x) =$
- 2. (f g)(3) = 6. $(g \cdot h)(4) =$
- 3. (f+h)(x) = 7. $(\frac{f}{a})(x) =$
- 4. (f+h)(-2) =8. $\left(\frac{f}{a}\right)(-1) =$

Let f(x) = 2x - 1, g(x) = 3x, and $h(x) = x^2 + 1$. Compute the following:

- 9. f(g(x)) = 12.f(g(-3)) =
- $10.(h \circ g)(x) =$ 13.g(f(h(-6))) =

11.h(f(9)) =

For #'s 14 & 15, $h(x) = (f \circ g)(x)$ 14. Let $h(x) = \sqrt{x-5}$ and $f(x) = \sqrt{x}$, find g(x). 15. Let $h(x) = (5x+1)^2 - (5x+1)$ and $f(x) = x^2 - x$, find g(x).

6.8 INVERSE FUNCTIONS

Find the inverse.

1.
$$f = \{(1, -2), (-2, 1), (0, 7)\}$$

7. $f(x) = \frac{7x+9}{6}$

2.
$$f = \{(-6,3), (8,2), (3,3)\}$$

8. $f(x) = \frac{2x}{5x-5}$

3.
$$f(x) = \frac{3x-1}{8}$$

9. $f(x) = (x+9)^3 - 5$

4.
$$f(x) = \frac{-3x}{5x-1}$$
 10. $f(x) = \frac{2-4x}{-4-x}$

- 5. $f(x) = \sqrt[3]{x+5} + 2$ 11. $f(x) = 17x^2$
- 6. $f(x) = 5\sqrt{x-4}$ 12. $f(x) = \frac{-3-x}{1-4x}$

Determine if f(x) and g(x) are inverses. Justify your answer.

13.
$$f(x) = x + 1$$
 and $g(x) = x - 1$
16. $f(x) = \frac{7x+5}{2}$ and $g(x) = \frac{2x-5}{7}$

14.
$$f(x) = 2x + 1$$
 and $g(x) = \frac{1}{2}x - 1$
 $\sqrt{x+2} - 3$
17. $f(x) = (x+3)^2 - 2$ and $g(x) = \sqrt{x+2} - 3$

$$15.f(x) = \frac{x+3}{8}$$
 and $g(x) = 8x + 3$