NC MATH 3 HONORS UNIT 6 - EXPONENTIALS AND LOGARITHMS

6.1 PROPERTIES OF LOGARITHMS

Expand each logarithm.

1. $\log _{8} 4 a b^{2}$

Rewrite each equation in logarithmic form.

11. $3^{5}=243$
12. $\log _{2}(c d)^{3}$
13. $81=243^{\frac{4}{5}}$
14. $\log _{3} \frac{7}{v^{3}}$

Rewrite each equation in exponential form.
4. $\log \frac{w^{5} x}{y z^{9}}$
13. $\log _{2} 8=3$
14. $\log _{243} 27=\frac{3}{5}$

Condense each expression into a single logarithm.

5. $\log 3-\log 8$

Evaluate each logarithm.

15. $\log _{5} 125$
16. $\log _{12} 12$
17. $\log _{5} 2+6 \log _{5} k-3 \log _{5} m$
18. $\log 10^{-2}$
19. $5 \log _{3} x \cdot \log _{3} y$
20. $\log _{7} 7^{8}$
21. $4\left(\log _{3} a+\log _{3} b\right)$
22. $\log _{16} 1$
23. $2\left(\log _{9} 2+\log _{9} x\right)-3\left(\log _{9} 3+\log _{9} y\right)$
24. $\log 2$
25. $6^{\log _{6} 7}$
26. $\log _{6} 52$

Solve each equation.

1. $7.5^{x}=42.6$
2. $e^{x-1}-5=5$
3. $e^{4 b}=19$
4. $3 \cdot 11^{2 c+5}=20$
5. $7 \cdot 5^{w}=21$
6. $7^{m+4}=5^{m}$
7. $8^{h+3}=12$
8. $6^{a}=10^{a-2}$
9. $6^{4 p-1}=18$
10. $6^{2 x+1}=5^{4 x-5}$
11. $9^{k-5}+4=27$
12. $2^{k+8}=10^{k-4}$

6.3 SOLVING LOGARITHMIC EQUATIONS

Solve each equation.

1. $\log _{3} x=4$
2. $\log (3 x+4)=2$
3. $\log _{4}(2 x+10)=3$
4. $\log _{x} 512=3$
5. $\log _{6}(4 x+9)=\log _{6}(2 x+19)$
6. $\ln (2 x+4)=3$
7. $\log _{3}(3 x-6)=\log _{3}(2 x+1)$
8. $\log _{7}(3 x+7)=4$
9. $\ln x=3$
10. $\log _{2} x+\log _{2}(x+6)=4$
11. $\log _{x} 36=2$
12. $\log _{3}(x+10)-\log _{3} x=4$
13. $\log _{5}(3 x+11)=3$
14. $\log _{7} x^{2}=\log _{7}(x+20)$
15. $\log _{5} 2+\log _{5} x=3$
16. $\ln x+\ln x^{2}=8$
17. $\log _{8} 4 x^{4}-\log _{8} 2 x^{2}=1$
18. $\log _{4}(x+4)+\log _{4}(x+64)=4$

6.5 COMPOUND INTEREST

1. How long does it take $\$ 1425$ to triple if it is invested at 4% interest compounded quarterly?
2. At what interest rate compounded continuously would you have to invest $\$ 350$ to have $\$ 800$ available in 5 years?
3. What amount must be invested at 5% interest compounded monthly to have $\$ 6000$ available in 10 years?
4. At what interest rate compounded monthly would you have to invest $\$ 1300$ to double your money in 7 years?
5. Emmet deposits $\$ 650$ in a savings account with 8% interest compounded quarterly. Maggie deposits the same amount in another savings account with 8.2% interest compounded semiannually. If both Emmet and Maggie leave their money in the accounts for 2 years, which account will have the greater final balance?
6. If $\$ 800$ is invested at 8% interest compounded continuously, how long will it take before the amount is $\$ 900$?
7. A laptop purchased for $\$ 800$ decreases in value by 20% each year. How long will it take before the laptop to be worth $\$ 350$?
8. Hugo deposits $\$ 200$ in a savings account with 0.3% interest compounded quarterly. Grace deposits the same amount in another savings account with 0.3% interest compounded semiannually. If both Hugo and Grace leave their money in the accounts for 3 years, which account will have the greater final balance?

6.6 MORE APPLICATIONS OF EXPONENTS AND LOGARITHMS

1. The half-life of Cesium-137 is 30.2 years. If the initial mass of the sample is 15 kg , how much will remain after 151 years?
2. Myerstopia has a population of 6000 . After 10 years, the population has increased exponentially to 7183 people. How many people will be living in Myerstopia after 23 years?
3. A loaf of bread that currently sells for $\$ 3.60$ sold for $\$ 3.10$ six years ago. At what rate has the cost of the loaf of bread increased each year?
4. A diamond ring currently worth $\$ 3000$ increases in value by 8% each year. What is the value of the ring in 50 years?
5. Carbon- 14 has a half-life of 5700 years. Find the age of a sample at which 22% of the radioactive nuclei originally present have decayed.
6. A population of 100 rabbits are living on an island. After one year, the rabbit population has increased exponentially to 500 rabbits. What will the population be after another 6 months?
7. Carbon- 14 has a half-life of 5700 years. Consider a sample of fossilized wood that when alive would have contained 24 g of $\mathrm{C}-14$. It now contains 1.5 g . How old is the sample?
8. The half-life of a radioactive element is 133 days, but your sample will not be useful to you after 65% of the radioactive nuclei originally present have disintegrated. About how many days can you use the sample?

6.7 COMBINATIONS AND COMPOSITIONS OF FUNCTIONS

If $f(x)=x^{2}-1, g(x)=2 x-3$, and $h(x)=1-4 x$, find the following functions, as well as any values indicated.

1. $(f-g)(x)=$
2. $(g \cdot h)(x)=$
3. $(f-g)(3)=$
4. $(g \cdot h)(4)=$
5. $(f+h)(x)=$
6. $\left(\frac{f}{g}\right)(x)=$
7. $(f+h)(-2)=$
8. $\left(\frac{f}{g}\right)(-1)=$

Let $f(x)=2 x-1, g(x)=3 x$, and $h(x)=x^{2}+1$. Compute the following:
9. $f(g(x))=$
12. $f(g(-3))=$
10. $(h \circ g)(x)=$
13. $g(f(h(-6)))=$
11.h $(f(9))=$

For \#'s $14 \& 15, h(x)=(f \circ g)(x)$
14. Let $h(x)=\sqrt{x-5}$ and $f(x)=\sqrt{x}$, find $g(x)$.
15. Let $h(x)=(5 x+1)^{2}-(5 x+1)$ and $f(x)=x^{2}-x$, find $g(x)$.

6.8 INVERSE FUNCTIONS

Find the inverse.

1. $f=\{(1,-2),(-2,1),(0,7)\}$
2. $f(x)=\frac{7 x+9}{6}$
3. $f=\{(-6,3),(8,2),(3,3)\}$
4. $f(x)=\frac{2 x}{5 x-5}$
5. $f(x)=\frac{3 x-1}{8}$
6. $f(x)=(x+9)^{3}-5$
7. $f(x)=\frac{-3 x}{5 x-1}$
8. $f(x)=\frac{2-4 x}{-4-x}$
9. $f(x)=\sqrt[3]{x+5}+2$
10. $f(x)=17 x^{2}$
11. $f(x)=5 \sqrt{x-4}$
12. $f(x)=\frac{-3-x}{1-4 x}$

Determine if $f(x)$ and $g(x)$ are inverses. Justify your answer.
13. $f(x)=x+1$ and $g(x)=x-1$
16. $f(x)=\frac{7 x+5}{2}$ and $g(x)=\frac{2 x-5}{7}$
14. $f(x)=2 x+1$ and $g(x)=\frac{1}{2} x-1$
17. $f(x)=(x+3)^{2}-2$ and $g(x)=$ $\sqrt{x+2}-3$
15. $f(x)=\frac{x+3}{8}$ and $g(x)=8 x+3$

