Calculator Lab:

Trabslatiog Parabolas

- Press $\mathrm{Y}=$ and make sure all Plots are off.
- Enter $X^{\wedge} 2$ in Ylmake this graph bold (This is your parent graph)

$$
y=a(x-h)^{2}+k
$$

- Enter the comparison equation in Y2
- Press ZOOM and select 6:Standard to view these graphs on the standard window.

Part 1: Changing "a"

Equation	Graph	Vertex	Direction of Opening (circle one)	Max or Min (circle one)	How is it different than the parent?	What is a?
$\mathrm{y}=\mathrm{x}^{2}$				Up Down	Max Min	PARENT
$\mathrm{y}=4 \mathrm{x}^{2}$				Up Down	Max Min	
$\mathrm{y}=0.25 \mathrm{x}^{2}$						

Part 2: Changing " k "

Equation	Graph	Vertex	Direction of Opening (circle one)	Max or Min (circle one)	How is it different than the parent?	What is k ?
$y=x^{2}+4$			Up Down	Max Min		
$y=x^{2}+9$	1 		Up Down	Max Min		
$y=x^{2}-4$			Up Down	Max Min		

Part 3: Changing "h"

Equation	Graph	Vertex	Direction of Opening (circle one)	Max or Min (circle one)	How is it different than the parent?	What is h ?
$y=(x-2)^{2}$			Up Down	Max Min		
$y=(x-8)^{2}$			Up Down	Max Min		
$y=(x+3)^{2}$			Up Down	Max Min		
$\mathrm{y}=(\mathrm{x}+1)^{2}$	 		Up Down	Max Min		

Part 4: Putting it all together

Equation	Graph	Vertex	Direction of Opening (circle one)	Max or Min (circle one)	How is it different than the parent?
$y=(x-2)^{2}+4$	 \ldots		Up Down	Max Min	
$y=5(x+1)^{2+9}$			Up Down	Max Min	
$y=0.5(x-3)^{2}-4$			Up Down	Max Min	
$y=-1(x+4)^{2}-5$			Up Down	Max Min	

- Write an equation of a parabola that moves $y=x^{2}$ up 2 units, right 6 units, and opens down.
- Write an equation of a parabola that moves $y=x^{2}$ down 7 units, left 5 units, opens up, and is wider.

