OBJ: simplify exponents using the properties of exponents.

Properties: Zero and Negative Exponents

Zero as an Exponent	For every nonzero number a, $a^{0}=1$	Examples:
Negative Exponent	For every nonzero number a and integer n, $a^{-1}=\frac{1}{a^{n}}$	Examples:

What is the simplified form of each expression?
a) $x^{-9}=$
b) $\frac{1}{n^{-3}}=$
C) $4 c^{-3} b=$
d) $\frac{2}{a^{-3}}=$

Multiplying Powers with the Same Base		
To multiply powers with the same base, add the exponents.	$a^{m} \cdot a^{n}=$	$4^{2} \cdot 4^{6}=$

What is the simplified form of each expression in the following parts?
a) $5 x^{4} \cdot x^{9} \cdot 3 x=$
b) $-4 c^{3} \cdot 7 d^{2} \cdot 2 c^{-2}=$
c) $j^{2} \cdot k^{-2} \cdot 12 j=$

Dividing Powers with the Same Base		
To divide powers with the same base, subtract the exponents.	$\frac{a^{m}}{a^{n}}=$	$\frac{x^{4}}{x^{7}}=$

What is each expression written using each base only once?
a) $\frac{4 x^{8}}{2 x^{3}}=$
b) $\frac{9 m^{2} n^{4}}{-12 m^{5} n^{3}}=$
c) $\frac{-9 k^{6} j^{2}}{36 k j^{5}}=$
d) $\frac{5^{-2} a^{-3} b^{7}}{2 a^{5} b^{2}}=$

Raising a Product to a Power		
To raise a product to a power, raise each factor to the power and multiply.	$(a b)^{n}=$	$(3 x)^{4}=$

What is the simplified form of each expression?
a) $\left(x^{-2}\right)^{2}\left(3 x y^{5}\right)^{4}$
b) $\left(3 c^{5}\right)^{4}\left(c^{2}\right)^{3}$
c) $(6 a b)^{3}\left(5 a^{-3}\right)^{2}$

Raising a Quotient to a Power		
To raise a quotient to a power, raise the numerator and the denominator to the power and simplify.	$\left(\frac{a}{b}\right)^{n}=$	$\left(\frac{3}{5}\right)^{3}=$
To raise a quotient to a negative power, raise the numerator and the denominator to the power and simplify.	$\left(\frac{a}{b}\right)^{-n}=$	$\left(\frac{h}{g}\right)^{-3}=$

a) What is the simplified form of $\left(\frac{4}{x^{3}}\right)^{2}$? \quad b) What is the simplified form of $\left(\frac{2 x^{6}}{y^{4}}\right)^{-3}$?

Rational Exponents

Rational Exponent:

- We can rewrite expressions with rational exponents as radical expressions to help us evaluate them more easily
- The denominator of the fraction is the index (root) of your radical and the numerator is the power of the base inside the radical
- Example: $x^{\frac{a}{b}}=\sqrt[b]{x^{a}}$

Example 1: Simplify each expression

*Turn it into a radical. The numerator is the power of the base, and the denominator is the number in the corner of the radica!!
a) $27^{\frac{1}{3}}$
a) $a^{\frac{1}{6}}$
b) $64^{\frac{1}{2}}$
b) $m^{\frac{1}{2}}$
c) $8^{\frac{2}{3}}$
c) $x^{\frac{3}{4}}$
d) $12^{\frac{2}{3}}$
d) $y^{\frac{7}{2}}$

Example 2: Write each expression as a

 Rational Exponent*The numerator is the power of the base, and the denominator is the number in the corner of the square root sign!
a) $\sqrt{x^{3}}$
a) $\sqrt[3]{m}$
b) $\sqrt{5 y}$
b) $\sqrt[3]{2 y^{2}}$
c) $(\sqrt[4]{b})^{3}$
c) $\sqrt{-6}$
d) $\sqrt{a^{3} x^{2} y}$
d) $\sqrt[3]{16 a^{2} b^{5}}$

