OBJ: simplify and solve simple logarithm equations.

THE QUESTION: What exponent is required to go from a base "b" to reach a value of " \mathbf{a} "? Note: $\log x$ is a log that has no base written, it is implied that the base is \qquad .

Exponential Form

Exponential Form	Logarithmic Form
Example:	Example:

NHLONSH MOHAOO

Used to convert between exponential form and logarithmic form (and vice versa)!

Logarithmic Form:	$\log _{4} 64=y$		$\log _{u} \frac{15}{16}=v$		$\log _{\frac{7}{4}} x=y$	
Exponential Form:		$343^{x}=7$		$\left(\frac{1}{5}\right)^{x}=y$		$b^{a}=123$

Change of Base

Used when evaluating a logarithm that is not already in base 10. Be sure to write each out, and then evaluate using your calculator and the LOG button!

Example:	$\log _{4} 64$	$\log _{3} \frac{1}{243}$	$\log _{2} 4$	$\log _{2} 16$	$\log _{6} \frac{1}{216}$	$\log _{5} 125$
Written As:						
Solution:						

Solving using Simple Logarithms

SWOOSH Method	Change of Base	$\log =\log$
$\log (x)=\#$	$\log \#(\#)=x$	$\log (x)=\log (x)$
Use when a variable is attached to the logarithm.	Use when a constant is attached to the logarithm.	Use when one log is $=$ to one other log. same base in order to cancel.

Example 1: Solving using the SWOOSH Method
a) $\log _{2}(2 x+1)=4$
b) $\log _{4}(17 x-4)=3$
c) $\log (2 x-5)=2$

Example 2: Solving using Change of Base
a) $\log _{2} 8=3 x+3$
b) $\log _{5} 125=x^{2}-2 x$
c) $\log _{2} 16=x^{2}$

Example 3: Solve by canceling the logs!
a) $\log _{4}(3 x-1)=\log _{4}(2 x+3)$
b) $\log _{2}(x-6)=\log _{2}(2 x+2)$

