Lesson 12

Main Idea

Identify and draw threedimensional figures.

```
New Vocabulary
coplanar
parallel
solid
polyhedron
edge
face
vertex
diagonal
prism
base
pyramid
cylinder
cone
cross section
```


Math Online

glencoe.com

Cross Sections

MONUMENTS A two-dimensional figure, like a rectangle, has two dimensions: length and width. A three-dimensional figure, like a building, has three dimensions: length, width, and height.

1. Name the two-dimensional shapes that make up the sides of the Washington Monument.
2. If you observed the building from directly above, what two-dimensional figure would
 you see?
3. How are two- and three-dimensional figures related?

The figure at the right shows rectangle $A B C D$. Lines $A B$ and $D C$ are coplanar because they lie in the same plane. They are also parallel because they will never intersect, no matter how far they are extended.

Just as two lines in a plane can intersect or be parallel, there are different ways that planes
 may be related in space.

Intersect in a Line

Intersect at a Point

No Intersection

Intersecting planes can also form three-dimensional figures or solids. A polyhedron is a solid with flat surfaces that are polygons. Some terms associated with three-dimensional figures are edge, face, vertex, and diagonal.

QUICKReview

Polygons

Sides	Name
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon

Studly Tip

Common Error In the drawing of a rectangular prism, the bases do not have to be on the top and bottom. Any two parallel rectangles are bases. In a triangular pyramid, any face is a base.

A prism is a polyhedron with two parallel, congruent faces called bases. A pyramid is a polyhedron with one base that is a polygon and faces that are triangles. Prisms and pyramids are named by the shape of their bases.

There are also solids that are not polyhedrons. A cylinder is a three-dimensional figure with congruent, parallel bases that are circles connected with a curved side. A cone has one circular base and a vertex connected by a curved side.

EXADJPES Identify Solids

Identify the figure. Then name the bases, faces, edges, and vertices.

The figure has two parallel congruent bases that are triangles, so it is a triangular prism. bases $A B E, F C D$
faces $A B E, F C D, B C D E, F A E D, A B C F$
edges $\overline{A B}, \overline{B E}, \overline{E A}, \overline{F C}, \overline{C D}, \overline{D F}, \overline{B C}, \overline{E D}, \overline{A F}$ vertices A, B, C, D, E, F

The figure has one base that is a pentagon, so it is a pentagonal pyramid. base RSTUV faces RSTUV, QVR, QRS, QST, QTU, QUV edges $\overline{Q R}, \overline{Q S}, \overline{Q T}, \overline{Q U}, \overline{Q V}, \overline{V R}, \overline{R S}, \overline{S T}, \overline{T U}, \overline{U V}$ vertices Q, R, S, T, U, V

CHECK Your Progress

a.

b.

C.

Real-World Link
A well-landscaped lawn and garden can increase the value of a home up to 15%.

You can use three-dimensional drawings of objects to describe how different parts of the objects are related in space.

REAL-WORLD EXAMPLE Analyze Drawings

(3) FURNITURE The photo shows a garden bench. Draw and label the top, front, and side views of the bench.

CHECK Your Progress

d. TOOLBOX Draw and label the top, front, and side views of the toolbox shown.

The intersection of a solid and a plane is called a cross section of the solid.

EXAWIPLE Identify Cross Sections

(4) Describe the shape resulting from a vertical, angled, and horizontal cross section of a cylinder.

The cross section is a rectangle.

Angled Slice

The cross section is an oval.

Horizontal Slice

The cross section is a circle.

CHECK Your Progress

e. Describe the shape resulting from a vertical, angled, and horizontal cross section of a square pyramid.

Examples 1 and 2 Identify each figure. Then name the bases, faces, edges, and vertices.
1.

2.

3.

Example 3 4. AQUARIUMS Draw and label the top, front, and side views of the aquarium shown.

Example 4 Describe the shape resulting from each cross section.
5.

6.

7.

Examples 1 and 2 Identify each figure. Then name the bases, faces, edges and vertices.
8.

9.

10.

Example 3 11. BUILDINGS Draw and label the top, front, and side views of the building.

12. TENT Draw and label the top, front, and side views of the tent.

Example 4 Describe the shape resulting from each cross section.
13.

14.

15.

16.

17.

18.

19. State whether the following conjecture is true or false. If false, provide a counterexample.

> Two planes in three-dimensional space can intersect at one point.
20. SPORTS A standard basketball is shaped like a sphere.
a. Draw a basketball with a vertical, angled, and horizontal slice.
b. Describe the cross section made by each slice.

H.O.T. Problems

21. OPEN ENDED Draw the cross sections of a polyhedron, cylinder, or cone. Exchange papers with another student. Identify the three-dimensional figures represented by the cross sections.
22. FIND THE ERROR Brian is identifying the figure below. Find his mistake and correct it.

The figure has a triangular base. It is a triangular pyramid.

CHALLENGE Determine whether each statement is always, sometimes, or never true. Explain your reasoning.
23. A prism has 2 bases and 4 faces.
24. A pyramid has parallel faces.
25. WRITE MATH Explain whether a top-front-side view diagram always provides enough information to draw a figure. If not, provide a counterexample.
26. Benita received the gift box shown.

Which drawing best represents the top view of the gift box?
A.

B.

C.

D.

27. Which of the following is NOT an example of a polyhedron?
F. cylinder
G. rectangular prism
H. octagonal pyramid
I. triangular prism
28. Which of the following represents a side view of the figure below?

A.

C.

B.

D.

29. The figure below is a square pyramid.

Which of the following is NOT a cross section from the square pyramid?
F.

H.

G.

I.

