Lesson 12

Main Idea

Identify and draw threedimensional figures.

New Vocabulary

coplanar
parallel
solid
polyhedron
edge
face
vertex
diagonal
prism
base
pyramid
cylinder
cone
cross section

Math Online

glencoe.com

Cross Sections

MONUMENTS A two-dimensional figure, like a rectangle, has two dimensions: length and width. A three-dimensional figure, like a building, has three dimensions: length, width, and height.

- **1.** Name the two-dimensional shapes that make up the sides of the Washington Monument.
- **2.** If you observed the building from directly above, what two-dimensional figure would you see?
- **3.** How are two- and three-dimensional figures related?

The figure at the right shows rectangle *ABCD*. Lines *AB* and *DC* are **coplanar** because they lie in the same plane. They are also **parallel** because they will never intersect, no matter how far they are extended.

Intersecting planes can also form three-dimensional figures or **solids**. A **polyhedron** is a solid with flat surfaces that are polygons. Some terms associated with three-dimensional figures are *edge*, *face*, *vertex*, and *diagonal*.

QUICKReview

Polygons

Sides	Name
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon

A **prism** is a polyhedron with two parallel, congruent faces called bases. A pyramid is a polyhedron with one base that is a polygon and faces that are triangles. Prisms and pyramids are named by the shape of their bases.

There are also solids that are not polyhedrons. A cylinder is a three-dimensional figure with congruent, parallel bases that are circles connected with a curved side. A cone has one circular base and a vertex connected by a curved side.

Common Error In the drawing of a rectangular prism, the bases do not have to be on the top and bottom. Any two parallel rectangles are bases. In a triangular pyramid, any face is a base.

EXAMPLES Identify Solids

Identify the figure. Then name the bases, faces, edges, and vertices.

The figure has two parallel congruent bases that are triangles, so it is a triangular prism.

bases ABE, FCD

faces ABE, FCD, BCDE, FAED, ABCF edges \overline{AB} , \overline{BE} , \overline{EA} , \overline{FC} , \overline{CD} , \overline{DF} , \overline{BC} , \overline{ED} , \overline{AF} **vertices** *A*, *B*, *C*, *D*, *E*, *F*

The figure has one base that is a pentagon, so it is a pentagonal pyramid.

base RSTUV

faces RSTUV, QVR, QRS, QST, QTU, QUV edges \overline{QR} , \overline{QS} , \overline{QT} , \overline{QU} , \overline{QV} , \overline{VR} , \overline{RS} , \overline{ST} , \overline{TU} , \overline{UV} vertices Q, R, S, T, U, V

CHECK Your Progress

b.

Real-World Link • •

A well-landscaped lawn and garden can increase the value of a home up to 15%.

You can use three-dimensional drawings of objects to describe how different parts of the objects are related in space.

REAL-WORLD EXAMPLE Analyze Drawings

FURNITURE The photo shows a garden bench. Draw and label the top, front, and side views of the bench.

> Top Front Side

CHECK Your Progress

d. TOOLBOX Draw and label the top, front, and side views of the toolbox shown.

The intersection of a solid and a plane is called a **cross section** of the solid.

EXAMPLE Identify Cross Sections

Describe the shape resulting from a vertical, angled, and horizontal cross section of a cylinder.

Vertical Slice

Angled Slice

Horizontal Slice

The cross section is a rectangle.

The cross section is an oval.

The cross section is a circle.

CHECK Your Progress

e. Describe the shape resulting from a vertical, angled, and horizontal cross section of a square pyramid.

CHECK Your Understanding

Examples 1 and 2 Identify each figure. Then name the bases, faces, edges, and vertices.

Example 3 4. AQUARIUMS Draw and label the top, front, and side views of the aquarium shown.

Example 4 Describe the shape resulting from each cross section.

5.

6.

7.

Practice and Problem Solving

Examples 1 and 2 Identify each figure. Then name the bases, faces, edges and vertices.

8.

9.

10.

Example 3 11. BUILDINGS Draw and label the top, front, and side views of the building.

12. TENT Draw and label the top, front, and side views of the tent.

Example 4 Describe the shape resulting from each cross section.

13.

14.

15

16.

17.

18.

19. State whether the following conjecture is *true* or *false*. If *false*, provide a counterexample.

Two planes in three-dimensional space can intersect at one point.

- **20. SPORTS** A standard basketball is shaped like a *sphere*.
 - **a.** Draw a basketball with a vertical, angled, and horizontal slice.
 - **b.** Describe the cross section made by each slice.

H.O.T. Problems

21. OPEN ENDED Draw the cross sections of a polyhedron, cylinder, or cone. Exchange papers with another student. Identify the three-dimensional figures represented by the cross sections.

22. FIND THE ERROR Brian is identifying the figure below. Find his

CHALLENGE Determine whether each statement is *always*, *sometimes*, or *never* true. Explain your reasoning.

- **23.** A prism has 2 bases and 4 faces. **24.** A pyramid has parallel faces.
- **25. WRITE MATH** Explain whether a top-front-side view diagram *always* provides enough information to draw a figure. If not, provide a counterexample.

Test Practice

26. Benita received the gift box shown.

Which drawing **best** represents the top view of the gift box?

- A. _____
- В.
- C.
- D.
- **27.** Which of the following is NOT an example of a polyhedron?
 - F. cylinder
 - G. rectangular prism
 - H. octagonal pyramid
 - I. triangular prism

28. Which of the following represents a side view of the figure below?

- Α.
- С.
- В.
- D.
- **29.** The figure below is a square pyramid.

Which of the following is NOT a cross section from the square pyramid?

F.

H.

G.

I.

