Important Facts about X and Suppose you have a population of *N* people or objects. On each object a **quantitative** variable *X* is measured. - You want to know about the **mean** value of *X* for all members of the population, denoted by μ . Also, the standard deviation of *X* for all members of the population is denoted by σ . - \square Now, to obtain μ would entail examining **every** member of the population. This is too hard, expensive, and time consuming! So what do we do? - \square We take a **simple random sample** of size n from this population and examine the sample. In particular, we look at the **mean** of the sample, denoted by \overline{x} . This should be a good estimate of the quantity we are really interested in, the mean of the population, μ . The question then becomes: What do we know about \bar{x} ? \square Well, there are literally millions of \overline{x} 's ... there is an \overline{x} for each possible sample we could select from the population. The distribution of all possible \overline{x} 's is known as the **sampling** distribution of \overline{x} . What do we know about the sampling distribution of \bar{x} ? (1) The mean of all possible values of the sample mean (\bar{x}) equals the population mean μ . $$\mu_{\bar{x}} = \mu$$ Thus, we say \bar{x} is an **unbiased estimator** for μ . (2) The standard deviation of all possible values of the sample mean (\bar{x}) equals the standard deviation of the population divided by the square root of the sample size. $$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$ - (3) What about the shape of the sampling distribution of \bar{x} ? Take this in two parts... - (A) If the **population** is normally distributed...then the sampling distribution of \bar{x} is normally distributed with mean and standard deviation from (1) and (2) above. - (B) If the **population** is **not** normally distributed...then the sampling distribution of \bar{x} becomes more normal as the sample size n increases. This is the **Central Limit Theorem**. Note that even when the population is **not** normally distributed, the facts given in (1) and (2) are **still true**! Suppose you have a population of *N* people or objects. On each object a **categorical** variable is measured with each member of the population put into one of two categories, "success" or "failure". - \Box You want to know about the **proportion** of members of the population that fall into the success category, denoted by p. - \square Now, to obtain p would entail examining **every** member of the population. This is too hard, expensive, and time consuming! So what do we do? - We take a **simple random sample** of size n from this population and examine the sample. In particular, we look at the **proportion** of the sample, denoted by \hat{p} , that fall into the success category. This should be a good estimate of the quantity we are really interested in, the proportion of the population, p, which falls into the success category. The question then becomes: What do we know about \hat{p} ? \Box Well, there are literally millions of \hat{p} 's ... there is a \hat{p} for each possible sample we could select from the population. The distribution of all possible \hat{p} 's is known as the **sampling** distribution of \hat{p} . What do we know about the sampling distribution of \hat{p} ? (1) The mean of all possible values of the sample proportion (\hat{p}) equals the population proportion, p. $$\mu_{\hat{p}} = p$$ Thus, we say \hat{p} is an **unbiased estimator** for p. (2) The standard deviation of all possible values of the sample proportion (\hat{p}) depends on the sample size and is given by the following formula $$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$ - (3) What about the shape of the **sampling distribution of** \hat{p} ? - o If $np \ge 10$ and $n(1-p) \ge 10$...then the sampling distribution of \hat{p} can be well approximated by a normal distribution with mean and standard deviation from (1) and (2) above. _____ **NOTE**: For each of the two situations given (quantitative and categorical), the size of the population should be at least 10 times the sample size.