Important Facts about X and

Suppose you have a population of *N* people or objects. On each object a **quantitative** variable *X* is measured.

- You want to know about the **mean** value of *X* for all members of the population, denoted by μ . Also, the standard deviation of *X* for all members of the population is denoted by σ .
- \square Now, to obtain μ would entail examining **every** member of the population. This is too hard, expensive, and time consuming! So what do we do?
- \square We take a **simple random sample** of size n from this population and examine the sample. In particular, we look at the **mean** of the sample, denoted by \overline{x} . This should be a good estimate of the quantity we are really interested in, the mean of the population, μ .

The question then becomes: What do we know about \bar{x} ?

 \square Well, there are literally millions of \overline{x} 's ... there is an \overline{x} for each possible sample we could select from the population. The distribution of all possible \overline{x} 's is known as the **sampling** distribution of \overline{x} .

What do we know about the sampling distribution of \bar{x} ?

(1) The mean of all possible values of the sample mean (\bar{x}) equals the population mean μ .

$$\mu_{\bar{x}} = \mu$$

Thus, we say \bar{x} is an **unbiased estimator** for μ .

(2) The standard deviation of all possible values of the sample mean (\bar{x}) equals the standard deviation of the population divided by the square root of the sample size.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

- (3) What about the shape of the sampling distribution of \bar{x} ? Take this in two parts...
 - (A) If the **population** is normally distributed...then the sampling distribution of \bar{x} is normally distributed with mean and standard deviation from (1) and (2) above.
 - (B) If the **population** is **not** normally distributed...then the sampling distribution of \bar{x} becomes more normal as the sample size n increases. This is the **Central Limit Theorem**. Note that even when the population is **not** normally distributed, the facts given in (1) and (2) are **still true**!

Suppose you have a population of *N* people or objects. On each object a **categorical** variable is measured with each member of the population put into one of two categories, "success" or "failure".

- \Box You want to know about the **proportion** of members of the population that fall into the success category, denoted by p.
- \square Now, to obtain p would entail examining **every** member of the population. This is too hard, expensive, and time consuming! So what do we do?
- We take a **simple random sample** of size n from this population and examine the sample. In particular, we look at the **proportion** of the sample, denoted by \hat{p} , that fall into the success category. This should be a good estimate of the quantity we are really interested in, the proportion of the population, p, which falls into the success category.

The question then becomes: What do we know about \hat{p} ?

 \Box Well, there are literally millions of \hat{p} 's ... there is a \hat{p} for each possible sample we could select from the population. The distribution of all possible \hat{p} 's is known as the **sampling** distribution of \hat{p} .

What do we know about the sampling distribution of \hat{p} ?

(1) The mean of all possible values of the sample proportion (\hat{p}) equals the population proportion, p.

$$\mu_{\hat{p}} = p$$

Thus, we say \hat{p} is an **unbiased estimator** for p.

(2) The standard deviation of all possible values of the sample proportion (\hat{p}) depends on the sample size and is given by the following formula

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

- (3) What about the shape of the **sampling distribution of** \hat{p} ?
 - o If $np \ge 10$ and $n(1-p) \ge 10$...then the sampling distribution of \hat{p} can be well approximated by a normal distribution with mean and standard deviation from (1) and (2) above.

NOTE: For each of the two situations given (quantitative and categorical), the size of the population should be at least 10 times the sample size.