One-Sample z Tests

1. The National Center for Health Statistics reports that the mean blood pressure for males $35-44$ years of age is 128 and the standard deviation in this population is 15 . The medical director of 3 M looks at the medical records of a random sample of 72 executives in this age group and finds that the mean blood pressure in this sample is $\bar{x}=126.07$. Is there significant evidence at the 5% level that 3M's executives have a different mean blood pressure from the general population? Assume that 3 M has over 1000 male executives in this age group.

P: State what the parameter of interest is representing in this problem.

H: State hypotheses in words and symbols.

A: Verify the assumptions/conditions.

- Random.
- Normal.
- Independent.
\mathbf{N} : Name the appropriate inference procedure.
T: Carry out the selected procedure. Find the test statistic.

$$
\mathrm{z}=\frac{\overline{\mathrm{x}}-\mu_{0}}{\sigma / \sqrt{n}}
$$

O: Obtain the corresponding P-value based on the test statistic and H_{a}.

M: Make a decision to reject or fail to reject H_{0}.

S: State your conclusion in the context of the problem.
2. In a discussion of the education level of the American workforce, someone says, "The average young person can't even balance a checkbook." The NAEP survey says that a score of 275 or higher on its test reflects the skill needed to balance a checkbook. The NAEP random sample of 840 young Americans had a mean score of $\bar{x}=272$, a bit below the checkbook-balancing level. If the standard deviation of scores of every young American on the test is $\sigma=60$, is this sample result significant evidence at the 5% level that the mean score for all young Americans is less than 275?

