Mrs. Daniel-AP Stats

11.1 WS Solutions

Cheap Dice?

Hypothesis:

H_{0} : The dice rolls are fair (evenly distributed between all 6 values).
H_{A} : The dice rolls are not fair (not evenly distributed).

Assess Conditions:

Random: random sample, stated.
Sample Size: We would expect each number to show up 10 times with a sample size of 60 , since with a fair dice the probability of any given number is $1 / 6$.
Independent: We can assume that all dice rolls are independent and that 6 dice is less than 10% of Mrs. Daniel's collection. She is a stats teacher!

Name the Test: x^{2} Goodness of Fit

Test Statistic: $\chi^{2}=\frac{(13-10)^{2}}{10}+\frac{(11-10)^{2}}{10}+\frac{(6-10)^{2}}{10}+\frac{(12-10)^{2}}{10}+\frac{(10-10)^{2}}{10}+\frac{(8-10)^{2}}{10}=0.9+0.1+1.6+0.4+0+$ $0.4=3.4$.

Obtain p-value: p-value: 0.64 .

Make a Decision: Since the p-value is large, we fail to reject the null hypotheses.

State a Conclusion: Since the P-value is quite large, we have convincing evidence that the dice is fair. However, this doesn't prove that her die is fair.

Landline Surveys?

Hypothesis:

H_{0} : The age distribution of people who answer landline telephone surveys is the same as the age distribution of all US residents.
H_{a} : The age distribution of people who answer landline telephone surveys is not the same as the age distribution of all US residents.

Assess Conditions:

- Random: The data came from a random sample of US residents who answer landline telephone surveys.
- Large Sample Size: The expected counts are $1048(0.191)=200.2,1048(0.215)=225.3,1048(0.211)=221.1$, $1048(0.155)=162.4,1048(0.228)=238.9$. All expected counts are at least 5 .
- Independent: Because we are sampling without replacement, there must be at least $10(1048)=10,480$ U.S. residents who answer landline telephone surveys. This is reasonable to assume.

Name the Test: Chi-square goodness-of-fit test.

Test Statistic $\chi^{2}=\frac{(141-200.2)^{2}}{200.2}+\cdots=48.2, d f=4$

Obtain P-value: p -value: 0.

Make a Decision: Because the P-value is practically zero, which is less than $\alpha=0.05$, we reject H_{0}.

State Conclusion: We have convincing evidence that the age distribution of people who answer landline telephone surveys is not the same as the age distribution of all US residents.

