Important Concepts not on the AP Statistics Formula Sheet

Part I:	portant Concepts not on the AF	Statistics Formula Shee	L
IQR = $Q_3 - Q_1$ Test for an outlier:1.5(IQR) above Q_3 or below Q_1 The calculator will run thetest for you as long as youchoose the boxplot with theoulier on it in STATPLOT	Linear transformation: Addition : affects center NOT spread adds to \bar{x} , M, Q ₁ , Q ₃ , IQR not σ Multiplication: affects both center and spread multiplies \bar{x} , M, Q ₁ , Q ₃ , IQR, σ	When describing data: describe center, spread, and shape. Give a 5 number summary or mean and standard deviation when necessary.	Histogram: fairly symmetrical unimodal
skewed	Skewed left	Ogive (cumulative	Boxplot (with an
right 20 15 10 10 12 3 4 5 6 7 8 9 10 11 12 Number of letters in word		frequency)	outlier)
Stem and leaf Treasury bills	Normal Probability Plot	$z = \frac{x - mean}{standard \ dev}$	r: correlation coefficient,
O 9 1 0 2556668 2 15779 3 011355899 4 24778	140- 130- 120- 120- 110-	$z = \frac{cr}{\sigma}$	The strength of the linear relationship of data. Close to 1 or -1 is very close to linear
5 1 1 2 2 2 5 6 6 7 8 7 9 6 2 4 5 6 9 7 2 7 8 8 0 4 8 9 8 10 4 5 11 3 12 13 14 7 (b)	The 80 th percentile means that 80% of the data is below that observation.	HOW MANY STANDARD DEVIATIONS AN OBSERVATION IS FROM THE MEAN 68-95-99.7 Rule for Normality N(μ , σ) N(0,1) Standard Normal	 r²: coefficient of determination. How well the model fits the data. Close to 1 is a good fit. "Percent of variation in y described by the LSRL on x"
residual = $y - \hat{y}$	Exponential Model: $y = ab^x$ take log of y	Explanatory variables explain changes in	Lurking Variable: A variable that may
residual = observed – predicted	Power Model: $y = ax^b$ take log of x and y	response variables. EV: x, independent RV: y, dependent	influence the relationship bewteen two variables. LV is not among the EV's
y = a+bx Slope of LSRL(b): rate of change in y for every unit x			
y-intercept of LSRL(a): y when $x = 0$			
Confounding: two variables are confounded when the effects of an RV cannot be distinguished.	$() \longrightarrow ()$	(X) (V)	
	Causation (a)	z Common response	Confounding (c)
		(b)	

Part II: Designing Experiments and Collecting Data:

Sampling Methods:

The Bad:

Voluntary sample. A voluntary sample is made up of people who decide for themselves to be in the survey. Example: Online poll

Convenience sample. A convenience sample is made up of people who are easy to reach.

Example: interview people at the mall, or in the cafeteria because it is an easy place to reach people.

The Good:

Simple random sampling. Simple random sampling refers to a method in which all possible samples of n objects are equally likely to occur.

Example: assign a number 1-100 to all members of a population of size 100. One number is selected at a time from a list of random digits or using a random number generator. The first 10 selected are the sample.

Stratified sampling. With stratified sampling, the population is divided into groups, based on some characteristic. Then, within each group, a SRS is taken. In stratified sampling, the groups are called **strata**.

Example: For a national survey we divide the population into groups or strata, based on geography - north, east, south, and west. Then, within each stratum, we might randomly select survey respondents.

Cluster sampling. With cluster sampling, every member of the population is assigned to one, and only one, group. Each group is called a cluster. A sample of clusters is chosen using a SRS. Only individuals within sampled clusters are surveyed. Example: Randomly choose high schools in the country and only survey people in those schools.

<u>Difference</u> between cluster sampling and stratified sampling. With stratified sampling, the sample includes subjects from each stratum. With cluster sampling the sample includes subjects only from sampled clusters.

Multistage sampling. With multistage sampling, we select a sample by using combinations of different sampling methods.

Example: Stage 1, use cluster sampling to choose clusters from a population. Then, in Stage 2, we use simple random sampling to select a subset of subjects from each chosen cluster for the final sample.

Systematic random sampling. With systematic random sampling, we create a list of every member of the population. From the list, we randomly select the first sample element from the first *k* subjects on the population list. Thereafter, we select every *kth* subject on the list.

Example: Select every 5th person on a list of the population.

Experimental Design:

A well-designed experiment includes design features that allow researchers to eliminate extraneous variables as an explanation for the observed relationship between the independent variable(s) and the dependent variable.

Experimental Unit or Subject: The individuals on which the experiment is done. If they are people then we call them subjects **Factor:** The explanatory variables in the study

Level: The degree or value of each factor.

Treatment: The condition applied to the subjects. When there is one factor, the treatments and the levels are the same.

Control. Control refers to steps taken to reduce the effects of other variables (i.e., variables other than the independent variable and the dependent variable). These variables are called **lurking variables**.

Control involves making the experiment as similar as possible for subjects in each treatment condition. Three control strategies are control groups, placebos, and blinding.

Control group. A control group is a group that receives no treatment

Placebo. A fake or dummy treatment.

Blinding: Not telling subjects whether they receive the placebo or the treatment

Double blinding: neither the researchers or the subjects know who gets the treatment or placebo

Randomization. Randomization refers to the practice of using chance methods (random number tables, flipping a coin, etc.) to assign subjects to treatments.

Replication. Replication refers to the practice of assigning each treatment to many experimental subjects.

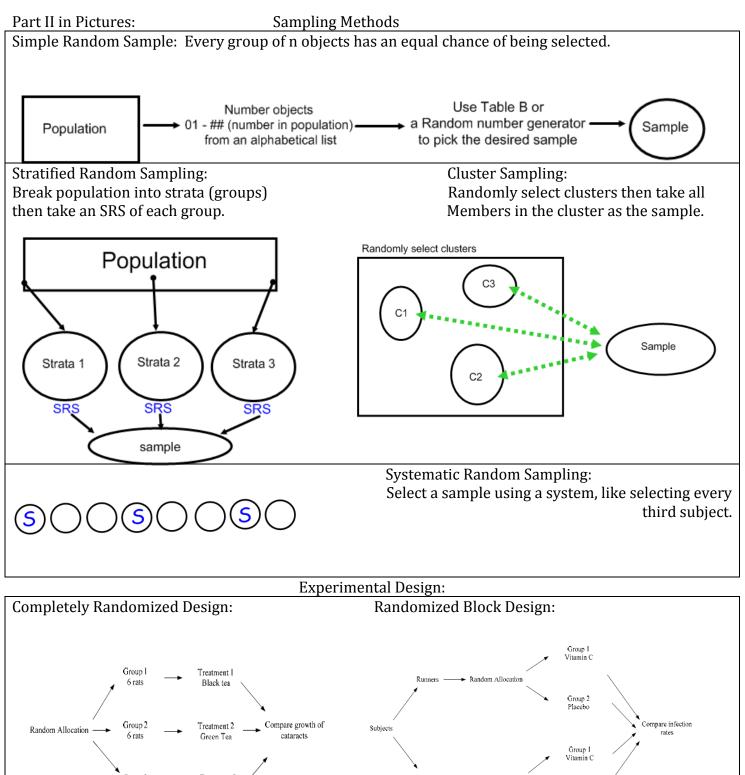
Bias: when a method systematically favors one outcome over another.

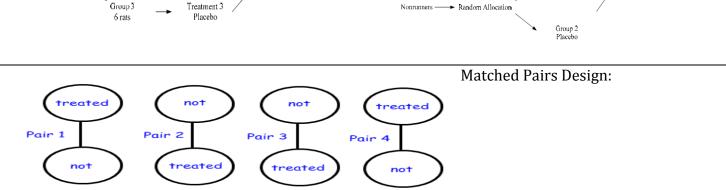
Types of design:

Completely randomized design With this design, subjects are randomly assigned to treatments.

Randomized block design, the experimenter divides subjects into subgroups called **blocks**. Then, subjects within each block are randomly assigned to treatment conditions. Because this design reduces variability and potential confounding, it produces a better estimate of treatment effects.

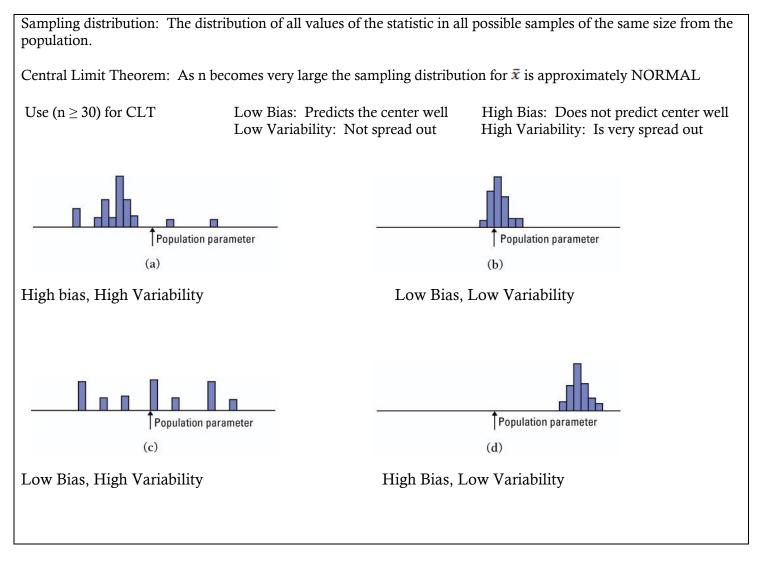
Matched pairs design is a special case of the randomized block design. It is used when the experiment has only two treatment conditions; and subjects can be grouped into pairs, based on some blocking variable. Then, within each pair, subjects are randomly assigned to different treatments.





Part III: Probability and Random Variables:

<u>- art</u>	Random Variables:	-	-
Counting Principle:	A and B are disjoint or	A and B are	
Trial 1: a ways	mutually exclusive if they	independent if	A B
Trial 2: b ways	have no events in	the outcome of	A B
Trial 3: c ways	common.	one does not	
The there are a x b x c ways	Roll two die: DISJOINT	affect the other.	
to do all three.	rolling a 9		
$0 \leq P(A) \leq 1$	rolling doubles	Mutually	
• = • (••) = •	Roll two die: not disjoint	Exclusive events	
	rolling a 4	CANNOT BE	
$1 - P(A) = P(A^c)$	rolling doubles	Independent	
	8	mucpenuent	.4
			.4
For Conditional Probabilit	ty use a TREE DIAGRAM	ſ·	
			P(A) = 0.3
o) م	0.7)(0.2) = 0.14 = 14%		P(B) = 0.5
0.2			$P(A \cap B) = 0.2$
			$P(A \cup B) = 0.3 + 0.5 - 0.2 = 0.6$
0.7 (0.7)(0.7) = 0.49 = 49%		P(A B) = 0.2/0.5 = 2/5
0.7			P(B A) = 0.2 / 0.3 = 2/3
0.1			
$ $ \langle	(0.7)(0.1) = 0.07 = 7%		
	(0.3)(0.4) = 0.12 = 12%		Eau Din annial Dualtathiliteu
0.3 0.4			For Binomial Probability:
	(0.3)(0.5) = 0.15 = 15%		Look for x out of n trials
0.5			1. Success or failure
0.1			2. Fixed n
0.1	(0.3)(0.1) = 0.03 = 3%		3. Independent observations
	(,(,)		4. p is the same for all observations
	Resulting		
	outcome		P(X=3) Exactly 3
	$B A \cap B$		use binompdf(n,p,3)
P(B A)	-		
_ A <			$P(X \le 3)$ at most 3
P(A) P(B' A)	~		use binomcdf(n,p,3) (Does 3,2,1,0)
	B' $A \cap B'$		$P(X \ge 3)$ at least 3 is 1 - $P(X \le 2)$
			use 1 - binomcdf(n,p,2)
	$B A' \cap B$		Normal Approximation of Binomial:
P(A) P(B A)			for $np \ge 10$ and $n(1-p) \ge 10$
`_A'			the X is approx N(np, $\sqrt{np(1-p)}$)
P(B' A')			$(10 \times 15 \text{ approx} 1((1p, \sqrt{np}(1 p))))$
	B' $A' \cap B'$		
Discrete Random Variable	: has a countable number o	f possible events	Geometric Probability:
(Heads or tails, each .5)			Look for # trial until first success
Continuous Random Varia	ble: Takes all values in an	interval: (EX:	1. Success or Failure
normal curve is continuous		× ×	2. X is trials until first success
Law of large numbers. As		u	3. Independent observations
Law of large numbers. As	in occomes very large ~ /	~	4. p is same for all observations
			4. p is same for an observations
Linear Combinations:			$\mathbf{D}(\mathbf{V}-\mathbf{r}) = \mathbf{r}(1 + 1)^{n-1}$
$\mu_{a+bx} = a + b\mu_x$			$P(X=n) = p(1-p)^{n-1}$
			μ is the expected number of trails until the
$\mu_{X+Y} = \mu_x + \mu_Y$			first success or $\frac{1}{2}$
$\mu_X + \gamma = \mu_X + \mu_Y$			p
$\sigma_{a+bx}^2 = b^2 \sigma_X^2$			$r^{2} - \frac{1-p}{2}$
			$\sigma^2 = \frac{1-p}{p^2}$
$\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$	$\sigma_{11}^2 = \sigma_{12}^2 + \sigma_{12}^2$		٣
$-x+y$ $\sigma_X + \sigma_Y$	-X-Y $-X$ $-Y$		
			$P(X > n) = (1 - p)^n = 1 - P(X \le n)$



See other sheets for Part IV

ART is my BFF

Type I Error: Reject the null hypothesis when it is actually True

Type II Error: Fail to reject the null hypothesis when it is False.

ESTIMATE – DO A CONFIDENCE INTERVAL

EVIDENCE - DO A TEST

Paired Procedures	Two Sample Procedures
 Must be from a matched pairs design: Sample from one population where each subject receives two treatments, and the observations are subtracted. OR Subjects are matched in pairs because they are similar in some way, each subject receives one of two treatments and the observations are subtracted 	 Two independent samples from two different populations OR Two groups from a randomized experiment (each group would receive a different treatment) Both groups may be from the same population in this case but will randomly receive a different treatment.

Major Concepts in Probability For the expected value (mean, μ_x) and the σ_x or σ_x^2 of a probability distribution use the formula sheet

For the expected value (mean, μ_x) and the σ_x or σ_x of a probability distribution use the formula sheet			
Binomial Probability	Simple Probability (and, or, not):		
Fixed Number of Trials Probability of success is the same for all trials Trials are independent	Finding the probability of multiple simple events. Addition Rule: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ Multiplication Rule: $P(A \text{ and } B) = P(A)P(B A)$		
If X is B(n,p) then (ON FORMULA SHEET) Mean $\mu_X = np$ Standard Deviation $\sigma_X = \sqrt{np(1-p)}$ For Binomial probability use $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ or use: Exactly: P(X = x) = binompdf(n, p, x) At Most: P(X \le x) = binomcdf(n, p, x) At least: P(X \ge x) = 1 - binomcdf(n, p, x) More than: P(X > x) = 1 - binomcdf(n, p, x)	Mutually Exclusive events CANNOT be independent A and B are independent if the outcome of one does not affect the other. A and B are disjoint or mutually exclusive if they have no events in common. Roll two die: DISJOINT rolling a 9 rolling doubles Roll two die: NOT disjoint rolling a 4 rolling doubles La dagan dagt. $P(\mathbf{R}) = P(\mathbf{R} \mid \mathbf{A})$		
Less Than: $P(X < x) = binomcdf(n, p, x-1)$ You may use the normal approximation of the binomial distribution when $np \ge 10$ and $n(1-p) \ge 10$. Use then mean and standard deviation of the binomial situation to find the Z score.	Independent: P(B) = P(B A) Mutually Exclusive: P(A and B) = 0		
Geometric Probability	Conditional Probability		
You are interested in the amount of trials it takes UNTIL you achieve a success. Probability of success is the same for each trial Trials are independent Use simple probability rules for Geometric Probabilities. $P(X=n) = p(1-p)^{n-1}$ $P(X > n) = (1-p)^n = 1 - P(X \le n)$ μ_X is the expected number of trails until the first success or $\frac{1}{p}$	Finding the probability of an event given that another even has already occurred. Conditional Probability: $P(B A) = \frac{P(A \cap B)}{P(A)}$ Use a two way table or a Tree Diagram for Conditional Problems. Events are Independent if $P(B A) = P(B)$		
Normal Pro	obability		
For a single observation from a normal population $P(X > x) = P(z > \frac{x - \mu}{\sigma}) \qquad P(X < x) = P(z < \frac{x - \mu}{\sigma})$	For the mean of a random sample of size n from a population. When n > 30 the sampling distribution of the sample mean \overline{x} is approximately Normal with: $\mu_{\overline{x}} = \mu$		
To find $P(x < X < y)$ Find two Z scores and subtract the probabilities (upper – lower) Use the table to find the probability or use normalcdf(min,max,0,1) after finding the z-score	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ If n < 30 then the population should be Normally distributed to begin with to use the z-distribution. $P(\overline{X} > x) = P(z > \frac{\overline{x - \mu}}{\sigma/\sqrt{n}}) \qquad P(\overline{X} < x) = P(z < \frac{\overline{x - \mu}}{\sigma/\sqrt{n}})$ To find $P(x < X < y)$ Find two Z scores and subtract the probabilities (upper – lower) Use the table to find the probability or use normalcdf(min,max,0,1) after finding the z-score		

Mutually Exclusive vs. Independence

You just heard that Dan and Annie who have been a couple for three years broke up. This presents a problem, because you're having a big party at your house this Friday night and you have invited them both. Now you're afraid there might be an ugly scene if they both show up. When you see Annie, you talk to her about the issue, asking her if she remembers about your party. She assures you she's coming. You say that Dan is invited, too, and you wait for her reaction. If she says, "That jerk! If he shows up I'm not coming. I want nothing to do with him!", they're **mutually exclusive**. If she says, "Whatever. Let him come, or not. He's nothing to me now.", they're **independent**.

Mutually Exclusive and Independence are two very different ideas

Mutually Exclusive (disjoint):	Independence:
$\frac{P(A \text{ and } B) = 0}{P(A \text{ and } B) = 0}$	$\frac{P(B) = P(B A)}{P(B A)}$
Events A and B are mutually exclusive if they have no	Events A and B are independent if knowing one outcome
outcomes in common.	does not change the probability of the other.
That is A and B cannot happen at the same time.	That is knowing A does not change the probability of B.
Example of mutually exclusive (disjoint) :	Examples of independent events:
A: roll an odd on a die	A: draw an ace
B: roll an even on a die	B: draw a spade
Odd and even share no outcomes	P(Spade) = 13/52 = 1/4
P(odd and even) = 0	P(Spade Ace) = 1/4
Therefore, they are mutually exclusive.	Knowing that the drawn card is an ace does not change the probability of drawing a spade
Example of not mutually exclusive (joint):	
A: draw a king	Examples that are dependent (not independent):
B: draw a face card	A: roll a number greater than 3
	B: roll an even
King and face card do share outcomes . All of the kings	
are face cards.	P(even) = 3/6 = 1/2
P(king and face card) = $4/52$	P(even greater than 3) = $2/3$
Therefore, they are not mutually exclusive.	Knowing the number is greater than three changes the
	probability of rolling an even number.

Mutually Exclusive events	Independent events cannot be	Dependent Events may or
cannot be independent	Mutually Exclusive	may not be mutually exclusive
		Dependent and mutually exclusive
Mutually exclusive and	Independent and not mutually	A: draw a queen
dependent	exclusive	B: draw a king
acpendent	CACIUSI VC	Knowing it is a queen changes the probability of
A: Roll an even	A: draw a black card	it being a king and they do not share outcomes.
B: Roll an odd	B: draw a king	
		Dependent and not mutually exclusive
They share no outcomes and	Knowing it is a black card does	A: Face Card
knowing that it is odd changes	not change the probability of it	B: King
the probability of it being even.	being a king and they do share	Knowing it is a face card changes the probability
	outcomes.	of it being a king and they do share outcomes.

If events are mutually exclusive then:	If events are independent then:
P(A or B) = P(A) + P(B)	P(A and B) = P(A)P(B)
If events are not mutually exclusive use the general rule:	If events are not independent then use the general rule:
P(A or B) = P(A) + P(B) - P(A and B)	P(A and B) = P(A)P(B A)

Interpretation for a Confidence Interval:

I am C% confident that the true parameter (mean μ or proportion p) lies between # and #. INTERPRET IN CONTEXT!!

<u>Interpretation of C% Confident:</u> Using my method, If I sampled over and over again, C% of my intervals would contain the true parameter (mean μ or proportion p).

NOT: The parameter lies in my interval C% of the time. It either does or does not!!

<u>If $p < \alpha$ </u> I **reject** the null hypothesis H₀ and I have **sufficient/strong** evidence to support the alternative hypothesis H_a

INTERPRET IN CONTEXT in terms of the alternative.

<u>If $p > \alpha$ I fail to reject the null hypothesis H₀</u> and I have **insufficient/poor** evidence to support the alternative hypothesis H_a

INTERPRET IN CONTEXT in terms of the alternative.

Evidence Against H _o	
P-Value	
"Some"	0.05 < P-Value < 0.10
"Moderate or Good"	0.01 < P-Value < 0.05
"Strong"	P-Value < 0.01

Interpretation of a p-value:

The probability, assuming the null hypothesis is true, that an observed outcome would be as extreme or more extreme than what was actually observed.

Duality: Confidence intervals and significance tests.

If the hypothesized parameter lies outside the C% confidence interval for the parameter I can REJECT $\rm H_0$

If the hypothesized parameter lies inside the C% confidence interval for the parameter I FAIL TO REJECT $\rm H_0$

Power of test:

The probability that at a fixed level α test will reject the null hypothesis when and alternative value is true.

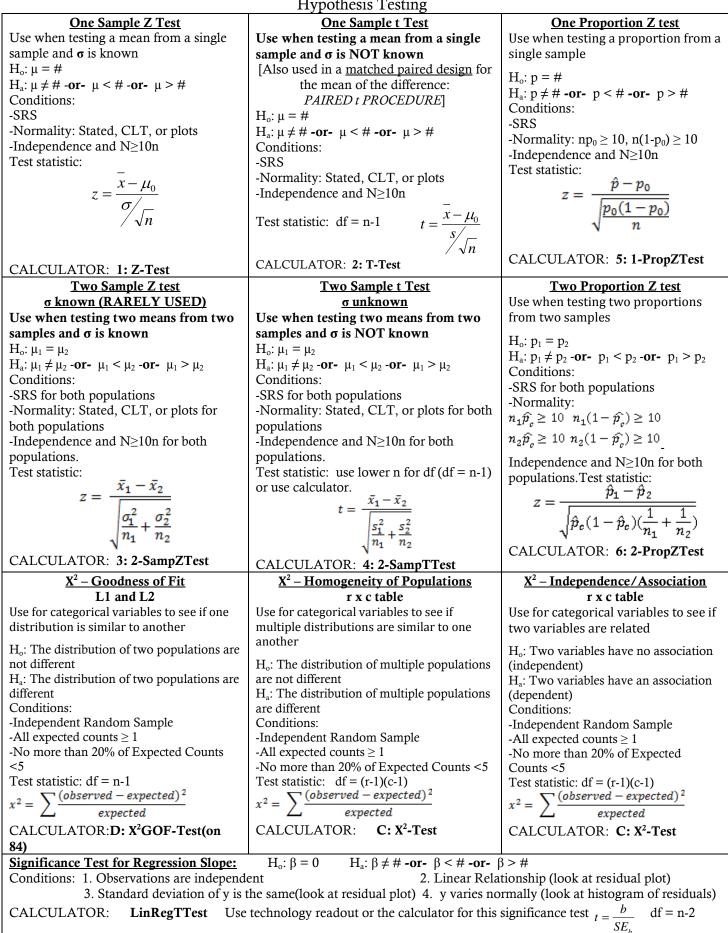
Confidence]	Intervals
--------------	-----------

Confidence Intervals			
One Sample Z IntervalUse when estimating a singlepopulation mean and σ is knownConditions:-SRS-Normality: CLT, stated, or plots-Independence and N≥10nInterval: $\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$	One Sample t Interval Use when estimating a single mean and σ is NOT known [Also used in a matched paired design for the mean of the difference: <i>PAIRED t PROCEDURE</i>] Conditions: -SRS -Normality: CLT, stated, or plots -Independence and N≥10n Interval:	$\frac{\text{One Proportion Z Interval}}{\text{Use when estimating a single}}$ $proportion$ Conditions: -SRS -Normality: $n\hat{p} \ge 10$, $n(1-\hat{p}) \ge 10$ -Independence and N $\ge 10n$ Interval: $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	
CALCULATOR: 7: Z-Interval	$\overline{x} \pm t^* \frac{s}{\sqrt{n}}$ df = n-1 CALCULATOR: 8: T-Interval	CALCULATOR: A: 1-PropZInt	
Two Sample Z Interval σ known (RARELY USED)Use when estimating the difference between two population means and σ is known Conditions: -SRS for both populations -Normality: CLT, stated, or plots for -both populations -Independence and N≥10n for both populations. Interval: $(x_1 - x_2) \pm z^* \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	Two Sample t Interval 	Two Proportion Z Interval Use when estimating the difference between two population proportions. Conditions: -SRS for both populations -Normality: $n_1\hat{p}_1 \ge 10 \ n_1(1 - \hat{p}_1) \ge 10$ $n_2\hat{p}_2 \ge 10 \ n_2(1 - \hat{p}_2) \ge 10$ -Independence and N≥10n for both populations. Interval: $(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	
CALCULATOR: 9: 2-SampZInt	calculator CALCULATOR: 0: 2-SampTInt	CALCULATOR: B: 2-PropZInt	
Use when estimating the slope of the Conditions: 1. Observations are independent 2. Linear Relationship (look at resid 3. Standard deviation of y is the sam 4. y varies normally (look at histograding the same) Interval:	ual plot) le(look at residual plot)	<u>pe:</u>	

Interval: $b \pm t^* SE_b$

df = n - 2 CALCULATOR: LinRegTInt Use technology readout or calculator for this confidence interval.

Hypothesis Testing



IQR Inner Quartile Range \$\overline{x}\$ Mean of a sample	
μ Mean of a population s Standard deviation of a sample	
σ Standard deviation of a population	
p Sample proportion	
p Population proportion	
s ² Variance of a sample	
σ^2 Variance of a population	
M Median Σ Summation	
Q3 Third Quartile Z Standardized value – z test statistic	
z^* Standardized value – z test statistic	
t Test statistic for a t test t Critical value for the t-distribution	
$N(\mu, \sigma)$ Notation for the normal distribution with mean and standard deviation	
r Correlation coefficient – strength of linear relationship	
r^2 Coefficient of determination – measure of fit of the model to the data	
$\hat{y} = a + bx$ Equation for the Least Squares Regression Line	
a y-intercept of the LSRL	
b Slope of the LSRL (\$\vec{v}\$,\$\vec{v}\$) Deint the LSRL second through	
(\bar{x}, \bar{y}) Point the LSRL passes through	
$y = ax^b$ Power model	
y = ab ^x Exponential model	
SRS Simple Random Sample	
S Sample Space	
P(A) The probability of event A A ^c A complement	
P(B A) Probability of B given A ∩ Intersection (And)	
U Union (Or)	
X Random Variable	
B(n,p) Binomial Distribution with observations and probability of success	
$\binom{n}{k}$ Combination n taking k	
pdf Probability distribution function	
cdf Cumulative distribution function	
n Sample size N Population size	
N Population size CLT Central Limit Theorem	
$\sigma_{\bar{x}}$ Standard deviation of a sampling distribution	
df Degrees of freedom	
SE Standard error	
H ₀ Null hypothesis-statement of no change	
H _a Alternative hypothesis- statement of change	
p-value Probability (assuming H_0 is true) of observing a result as large or larger than that observed	
α Significance level of a test. P(Type I) or the y-intercept of the true LSRL	
β P(Type II) or the true slope of the LSRL	
χ^2 Chi-square test statistic	

Given a Set of Data:

								4
NEA change (cal):	-94	-57	-29	135	143	151	245	355
Fat gain (kg):	4.2	3.0	3.7	2.7	3.2	3.6	2.4	1.3
NEA change (cal):	392	473	486	535	571	580	620	690
Fat gain (kg):	3.8	1.7	1.6	2.2	1.0	0.4	2.3	1.1

Enter Data into L₁ and L₂ and run 8:Linreg(a+bx)

The regression equation is:

predicted fat gain = 3.5051 - 0.00344(*NEA*)

y-intercept: Fat gain is 3.5051 kilograms when NEA is zero.

slope: Fat gain decreases by .00344 for every unit increase in NEA.

r: correlation coefficient

r = -0.778Moderate, negative correlation between NEA and fat gain.

r²: coefficient of determination

 $r^2 = 0.606$

60.6% of the variation in fat gained is explained by the Least Squares Regression line on NEA. The linear model is a moderate/reasonable fit to the data. It is not strong.

The residual plot shows that the model is a reasonable fit; there is not a bend or curve, There is approximately the same amount of points above and below the line. There is No fan shape to the plot.

Predict the fat gain that corresponds to a NEA of 600.

predicted fat gain = 3.5051 - 0.00344 (600) predicted fat gain = 1.4411

Would you be willing to predict the fat gain of a person with NEA of 1000?

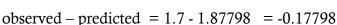
No, this is extrapolation, it is outside the range of our data set.

Residual: observed y - predicted y

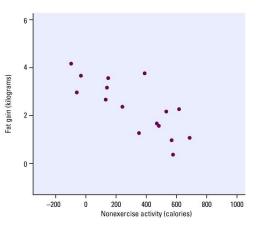
Find the residual for an NEA of 473

First find the predicted value of 473:

predicted fat gain = 3.5051 - 0.00344 (473) predicted fat gain = 1.87798

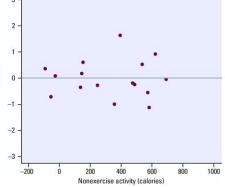


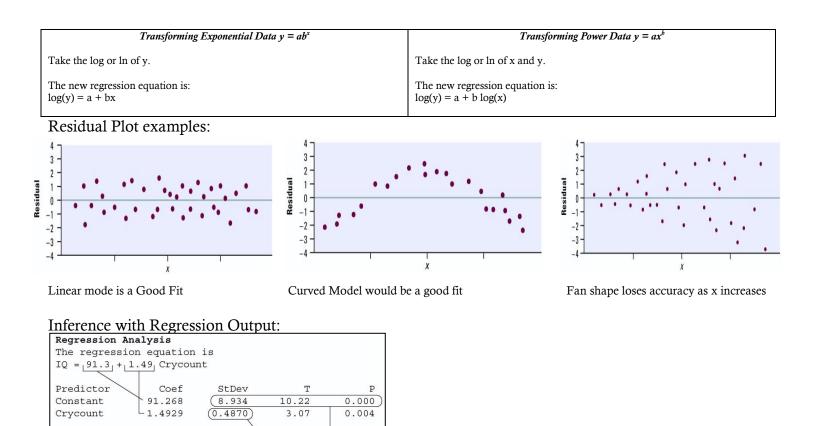
Residual



Minitab

Session					- O X
Regressio	n Analysis:	Fat gain ve	rsus Ni	A	
	sion equatio 3.51 - 0.00				
Predictor	Coef	SE Coef	т	Р	
Constant ÆA		0.3036 0.0007414			
5 = 0.7398	53 R-Sq =	60.6% R-S	q(adj)	= 57.8%	
					*
					•





Construct a 95% Confidence interval for the slope of the LSRL of IQ on cry count for the 20 babies in the study.

Formula: df = n - 2 = 20 - 2 = 18 $b \pm t^* SE_b$ $1.4929 \pm (2.101)(0.4870)$ 1.4929 ± 1.0232 (0.4697, 2.5161)

Find the t-test statistic and p-value for the effect cry count has on IQ.

SE,

We usually

ignore this part.

From the regression analysis t = 3.07 and p = 0.004

R-Sq = 20.7%

$$t = \frac{b}{SE_b} = \frac{1.4929}{0.4870} = 3.07$$

s = 17.50

S = 17.50

estimates

This is the standard deviation of the residuals and is a measure of the average spread of the deviations from the LSRL.

