CARD \#1
Sam is saving money to pay for a down payment on a car. Sam invests $\$ 2,142$ dollars into an account that has a 3.2\% interest compounded semi-annually. How much money will Sam have in 5 years?

A \$2,510.48 go to card \#7
B \$2,513.66 go to card \#5
C \$2,507.37 go to card \#6
D \$2,511.86 go to card \#8

CARD \#2

Sam is saving money to pay for a down payment on a car. Sam invests $\$ 1,224$ dollars into an account that has a 2.5% interest compounded semi-annually. How much money will Sam have in 4 years?

A \$1,352.73 go to card \#7
B \$1,354.77 go to card \#5
C $\$ 1,351.07$ go to card \#8
D \$1,351.89 go to card \#6

CARD \#3
Sam is saving money to pay for a down payment on a car. Sam invests $\$ 3,129$ dollars into an account that has a 2.8% interest compounded semi-annually. How much money will Sam have in 6 years?

A \$3,692.87 go to card \#5
B \$3,701.41 go to card \#6
C \$3,697.10 go to card \#8
D \$3,699.15 go to card \#7

CARD \#4
Sam is saving money to pay for a down payment on a car. Sam invests $\$ 3,014$ dollars into an account that has a 3.7% interest compounded semi-annually. How much money will Sam have in 5 years?

A \$3,614.41 go to card \#7
B \$3,626.50 go to card \#8
C \$3,618.11 go to card \#6
D \$3,620.38 go to card \#5

CARD \#5

The current in a certain electrical circuit is modeled by the formula $I=5^{-t}$, where t is the time in seconds. Find t for a current of 0.3 amperes.

A 0.748 seconds go to card \#10
B 0.186 seconds go to card \#9
C -0.748 seconds go to card \#12
D -0.186 seconds go to card \#11

CARD \#6

The current in a certain electrical circuit is modeled by the formula $I=3^{-t}$, where t is the time in seconds. Find t for a current of 0.3 amperes.

A -0.273 seconds go to card \#10
B 0.273 seconds go to card \#9
C -1.096 seconds go to card \#11
D 1.096 seconds go to card \#12

CARD \#7

The current in a certain electrical circuit is modeled by the formula $I=2^{-t}$, where t is the time in seconds. Find t for a current of 0.3 amperes.

A 0.433 seconds go to card \#10
B 1.737 seconds go to card \#9
C -1.737 seconds go to card \#12
D -0.433 seconds go to card \#11

CARD \#8

The current in a certain electrical circuit is modeled by the formula $I=4^{-t}$, where t is the time in seconds. Find t for a current of 0.3 amperes.

A -0.868 seconds go to card \#9
B 0.216 seconds go to card \#10
C 0.868 seconds go to card \#11
D -0.216 seconds go to card \#12

CARD \#9

The crab population for the
Chesapeake Bay region in Maryland is increasing at an estimated rate of 12.8% per year. If there are an estimated 372 million crabs in the Bay currently, how long will it take to reach a goal of 650 million crabs?

A 4.633 years go to card \#15
B 0.271 years go to card \#16
C 12.945 years go to card \#14
D 1.072 years go to card \#13

CARD \#10

The crab population for the
Chesapeake Bay region in Maryland is increasing at an estimated rate of 11.8% per year. If there are an estimated 327 million crabs in the Bay currently, how long will it take to reach a goal of 560 million crabs?

A 15.353 years go to card \#13
B 4.823 years go to card \#16
C 1.072 years go to card \#15
D 0.252 years go to card \#14

CARD \#11

The crab population for the
Chesapeake Bay region in Maryland is increasing at an estimated rate of 14.8% per year. If there are an estimated 337 million crabs in the Bay currently, how long will it take to reach a goal of 650 million crabs?

A 0.344 years go to card \#16
B 1.087 years go to card \#13
C 13.975 years go to card \#15
D 4.759 years go to card \#14

CARD \#12

The crab population for the
Chesapeake Bay region in Maryland is increasing at an estimated rate of 13.8% per year. If there are an estimated 327 million crabs in the Bay currently, how long will it take to reach a goal of 580 million crabs?

A 0.289 years go to card \#14
B 13.721 years go to card \#16
C 4.433 years go to card \#13
D 1.075 years go to card \#15

CARD \#13

At a constant temperature, the atmospheric pressure, p, in pascals, is given by the formula $p=101.3 e^{-0.001 h}$, where h is the altitude in meters. Find the atmospheric pressure when the altitude is 21.3 meters.

A 98.671 pascals go to card \#20
B 99.165 pascals go to card \#19
C 99.036 pascals go to card \#18
D 98.395 pascals go to card \#17

CARD \#14

At a constant temperature, the atmospheric pressure, p, in pascals, is given by the formula $p=101.3 e^{-0.001 h}$, where h is the altitude in meters. Find the atmospheric pressure when the altitude is 29.1 meters.

A 99.036 pascals go to card \#18
B 98.671 pascals go to card \#20
C 99.165 pascals go to card \#19
D 98.395 pascals go to card \#17

CARD \#15

At a constant temperature, the atmospheric pressure, p, in pascals, is given by the formula $p=101.3 e^{-0.001 h}$, where h is the altitude in meters. Find the atmospheric pressure when the altitude is 26.3 meters.

A 98.671 pascals go to card \#20
B 99.036 pascals go to card \#18
C 99.165 pascals go to card \#19
D 98.395 pascals go to card \#17

CARD \#16

At a constant temperature, the atmospheric pressure, p, in pascals, is given by the formula $p=101.3 e^{-0.001 h}$, where h is the altitude in meters. Find the atmospheric pressure when the altitude is 22.6 meters.

A 98.395 pascals go to card \#17
B 99.165 pascals go to card \#19
C 99.036 pascals go to card \#18
D 98.671 pascals go to card \#20

CARD \#17

The optical intensity of an object, called I, is determined by the formula $\log (I)=\log (4.6)-d$, where d is the distance in inches.
Find the optical intensity for a distance of 4 inches.

A 4.6×10^{-4} go to card \#21
B 0.022 go to card \#24
C 0.036 go to card \#22
D 3.9×10^{-4} go to card \#23

CARD \#18

The optical intensity of an object, called I, is determined by the formula $\log (I)=\log (5.1)-d$, where d is the distance in inches. Find the optical intensity for a distance of 4 inches.

A 0.037 go to card \#21
B 0.064 go to card \#22
C 5.1×10^{-4} go to card \#24
D 3.9×10^{-4} go to card \#23

CARD \#19

The optical intensity of an object, called I, is determined by the formula $\log (I)=\log (3.5)-d$, where d is the distance in inches. Find the optical intensity for a distance of 4 inches.

A 2.6×10^{-4} go to card \#21
B 0.032 go to card \#24
C 0.483 go to card \#22
D 3.5×10^{-4} go to card \#23

CARD \#20

The optical intensity of an object, called I, is determined by the formula $\log (I)=\log (2.3)-d$, where d is the distance in inches.
Find the optical intensity for a distance of 4 inches.

A 0.026 go to card \#24
B 2.3×10^{-4} go to card \#22
C 1.6×10^{-4} go to card \#21
D 0.091 go to card \#23

CARD \#21

The wind speed in miles per hour near the center of a tornado is modeled by $s=93 \log d+67$, where d is distance in miles. On March 18, 1925, a tornado whose wind speed was about 280 miles per hour struck the Midwest. How far did the tornado travel?

A 958.068 miles go to card \#27
B 2.290 miles go to card \#28
C 294.586 miles go to card \#25
D 195.129 miles go to card \#26

CARD \#22

The wind speed in miles per hour near the center of a tornado is modeled by $s=93 \log d+65$, where d is distance in miles. On March 18, 1925, a tornado whose wind speed was about 280 miles per hour struck the Midwest. How far did the tornado travel?

A 205.035 miles go to card \#25
B 960.068 miles go to card \#26
C 2.312 miles go to card \#27
D 292.586 miles go to card \#28

CARD \#23

The wind speed in miles per hour near the center of a tornado is modeled by $s=93 \log d+62$, where d is distance in miles. On March 18, 1925, a tornado whose wind speed was about 280 miles per hour struck the Midwest. How far did the tornado travel?

A 220.844 miles go to card \#28
B 289.586 miles go to card \#25
C 963.068 miles go to card \#27
D 2.344 miles go to card \#26

CARD \#24

The wind speed in miles per hour near the center of a tornado is modeled by $s=93 \log d+63$, where d is distance in miles. On March 18, 1925, a tornado whose wind speed was about 280 miles per hour struck the Midwest. How far did the tornado travel?

A 2.333 miles go to card \#25
B 962.068 miles go to card \#26
C 215.443 miles go to card \#27
D 290.586 miles go to card \#28

CARD \#25

How long will it take for $\$ 4000$ to triple if it is invested at 5.4% interest compounded quarterly?

A 55.930 years go to card \#29
B 20.482 years go to card \#31
C 55.930 months go to card \#32
D 20.482 months go to card \#30

CARD \#26
How long will it take for $\$ 4000$ to triple if it is invested at 3.9% interest compounded quarterly?

A 28.307 years go to card \#32
B 28.307 months go to card \#29
C 77.297 years go to card \#31
D 77.297 months go to card \#30

CARD \#27

How long will it take for $\$ 4000$ to triple if it is invested at 6.1% interest compounded quarterly?

A 18.147 months go to card \#30
B 49.554 months go to card \#31
C 49.554 years go to card \#32
D 18.147 years go to card \#29

CARD \#28

How long will it take for $\$ 4000$ to triple if it is invested at 4.8% interest compounded quarterly?

A 62.874 months go to card \#32
B 62.874 years go to card \#31
C 23.025 years go to card \#30
D 23.025 months go to card \#29

CARD \#29

The value of an iPod decreases by
41% every year. If the iPod
originally cost $\$ 250$, how much was the iPod worth after 9 months?

A $\$ 168.30$ go to card \#4
B \$2.17 go to card \#3
C $\$ 128.09$ go to card \#2
D \$0.08 go to card \#1

CARD \#30

The value of an iPod decreases by
44% every year. If the iPod
originally cost $\$ 250$, how much was the iPod worth after 9 months?

A \$135.06 go to card \#3
B $\$ 0.15$ go to card \#1
C \$1.35 go to card \#4
D \$161.84 go to card \#2

CARD \#31

The value of an iPod decreases by 48% every year. If the iPod originally cost $\$ 250$, how much was the iPod worth after 9 months?

A \$144.17 go to card \#3
B \$153.09 go to card \#1
C \$0.69 go to card \#4
D \$0.34 go to card \#2

CARD \#32

The value of an iPod decreases by
49% every year. If the iPod
originally cost $\$ 250$, how much was the iPod worth after 9 months?

A \$0.58 go to card \#2
B \$146.42 go to card \#1
C $\$ 150.88$ go to card \#3
D \$0.41 go to card \#4

