Synthetic Division

Synthetic division is a shortcut for polynomial division.

It only works for linear binomials. i.e. $(x+2)(2 x-3)$

Divide: $\left(2 x^{2}+7 x+9\right) \div(x+2)$

Divide: $\left(2 x^{2}+7 x+9\right) \div(x+2)$

\section*{| -2 | 2 | 7 | 9 |
| :--- | :--- | :--- | :--- |}

Write the coefficients of the dividend (including 0 placeholders if needed) Use the opposite sign of the number in the divisor.
$\begin{array}{llll}-2 & 2 & 7 & 9\end{array}$
Step 1: Bring down the first coefficient

$\begin{array}{llll}-2] & 2 & 7 & 9\end{array}$
 $$
-4
$$

2

$$
\begin{array}{llll}
-2] & 2 & 7 & 9 \\
& & -4 &
\end{array}
$$

23

Step 2: Multiply the divisor with the coefficient. Place it in the next column.
$-2 \times 2=-4$

$\begin{array}{llll}-2 & 2 & 7 & 9\end{array}$

$$
\begin{array}{ll}
-4 & -6
\end{array}
$$

Step 4: Multiply the divisor with the new coefficient. Place it in the next column.

$$
23
$$

$-2 \times 3=-6$

Step 5: Add $9+(-6)=3$
This last number is the remainder.

$\begin{array}{llll}-2 & 2 & 7 & 9\end{array}$
 $$
\begin{array}{ll} -4 & -6 \end{array}
$$

$$
2 3 \longdiv { 3 }
$$

Solution: $\quad 2 \mathrm{x}+3+\frac{3}{x+2}$

Divide: $\left(3 x^{4}-x^{3}+5 x-1\right) \div(x-3)$

3	3	-1	0	5	-1

Write the coefficients of the dividend (including 0 placeholders if needed)
Use the opposite sign of the number in the divisor.
$\begin{array}{lllllll}3 & 3 & -1 & 0 & 5 & -1 & \text { Step 1: Bring down the first coefficient }\end{array}$

3

3 $\begin{array}{lllllll}3 & -1 & 0 & 5 & -1 & \text { Step 2: Multiply the divisor with the }\end{array}$ coefficient. Place it in the next column. $3 \times 3=9$

3

$3 \begin{array}{llllllll}3 & 3 & -1 & 0 & 5 & -1 & \text { Step 3: Add }-1+9=8\end{array}$

9

38
3) 3 -1 $\begin{array}{llllll} & -1 & 5 & -1 & \text { Repeat steps } 2 \text { and } 3 \text { as necessary }\end{array}$

$\begin{array}{lll}9 & 24 & 72 \quad 231\end{array}$

$\begin{array}{llll}3 & 8 & 2477 & 230\end{array}$
3) $3 \begin{array}{lllll}3 & -1 & 0 & 5 & -1\end{array}$

Write final answer with correct degrees.
$\begin{array}{llll}9 & 24 & 72 \quad 231\end{array}$
$\begin{array}{llll}3 & 8 & 2 4 7 7 \longdiv { 2 3 0 }\end{array}$
Degree 3
Degree 2 Degree 0 Remainder
Degree 1
Solution: $3 x^{3}+8 x^{2}+24 x+77+\frac{230}{x-3}$

Divide: $\left(3 x^{2}+9 x-2\right) \div(3 x-1)$

The divisor must have a leading coefficient of 1 . Divide it by 3 .

Divide: $\left(3 x^{2}+9 x-2\right) \div(x-1 / 3)$

$1 / 3$	3	9	-2
	1	$3 \frac{1}{3}$	
	10	$1 \begin{array}{l}1 \frac{1}{3}\end{array}$	

Solution: $3 x+10+\frac{1 \frac{1}{3}}{x-\frac{1}{3}}$
Note: the remainder is over the new divisor.

Factor Theorem: A binomial is a factor of a polynomial
(like $(x-2)(x-4)$ are factors of $x^{2}-6 x+8$)
if synthetic division has a remainder of zero.

Is $(x-2)$ a factor of $3 x^{3}+2 x^{2}-33$?

$$
\begin{array}{lllll}
2 & 3 & 2 & 0 & -33
\end{array}
$$

$\begin{array}{lll}6 & 16 & 32\end{array}$
$\begin{array}{lllll}3 & 8 & 16 & -1\end{array}$
$(x-2)$ is not a factor of the polynomial.

Is $x=-4$ a solution to the polynomial $P(x)=x^{3}+2 x^{2}-3 x+20$?

If $x=-4$ is a solution, then $(x+4)$ must be a factor. Use the factor theorem.

$$
\begin{array}{lcccc}
-4 & 1 & 2 & -3 & 20 \\
& & -4 & 8 & -20 \\
\hline & 1 & -2 & 5 & 0
\end{array}
$$

$x=-4$ is a solution to $P(x)$.

Remainder Theorem: Synthetic division can

evaluate a function's value (i.e. $f(3)$). The answer is the remainder.
Note: you do not use the opposite sign of the \#
If $P(x)=3 x^{4}-25 x^{2}+4$, find $P(-3)$

$$
\begin{array}{lccccl}
-3 & 3 & 0 & -25 & 0 & 4 \\
& & -9 & 27 & -6 & 18 \\
\hline & 3 & -9 & 2 & -6 & 22
\end{array}
$$

$P(-3)=22$

