For #1 - 4, describe the transformations that would produce the graph of the second function from the graph of
the first function.

1. flg)=1? becomes fix) = (x=3) +5 2. fix)=x3 becomes f(x)= -3 -1
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3. fi=x becomesf(x) 1(J=+1> ~3 B f)=x becomes f(x)= ~2(3x-2+5 €
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5. Write the equatlon for the graph of function g(x), obtained by shifting the graph of f(x) =x three units left,

stretching the ‘graph vertically bya factor of two, reflecting that over the x-axis, and then translating the graph
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6. Wrne the equatlon for the graph of function g(x), obtained by shifting the graph of f(x) =x* two units right

and four units up. 'f
7. Determine the zer&é; and their multiplicity, the end behavior, the points of . ;“ ’
extrema, the intervals over which the function is increasing and decreasing, ¥
and the intervals over which the function is positive and negative. # y
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