
Example 2: The following chords are equidistant from the center of the circle.

b) Solve for x.

X=545

SWBAT solve for unknown variables using theorems about chords and arcs of circles.

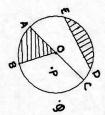
center and a point on the circle is a endpoints that are the Any segment with



CENTER OF CINCLE This point names the circle.

The given point is called the

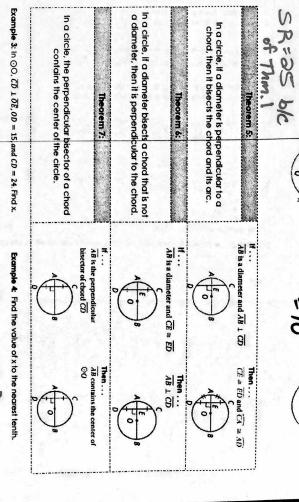
1R=13.5+13.5

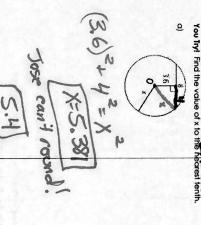

a) What is the length of RS?

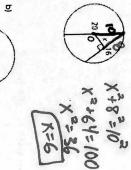
Any segment with end both that are on a circle is called a

Example 1: Name the circle, a radius, a chord, and a diameter of the circle.




Diameter: ED





Chord: ED Diameter. AC

Since a diameter is composed of two radii, then d = 2r and r = d/2

| Within a circle or in congruent circles, congruent chards are equidistant from the center (or centers).  If $\overline{AB} \cong \overline{CD}$ , then $OE \cong OF$ .  Converse Theorem 2:  Within a circle or in congruent central angles.  If $\overline{AB} \cong \overline{CD}$ , then $\angle AOB \cong \angle COD$ .  Converse Theorem 3:  Within a circle or in congruent central angles.  If $\overline{AB} \cong \overline{CD}$ , then $\angle AOB \cong \angle COD$ .  Converse Theorem 4:  Converse Theorem 4:  Within a circle or in congruent circles, congruent chards have congruent central angles.  If $\overline{AB} \cong \overline{CD}$ , then $\angle AOB \cong \angle COD$ .  Converse Theorem 4:  Within a circle or in congruent circles, congruent arcs have congruent circles, congruent congruent ci |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|







Sec 2/4/-

(1x)+6=R2 41=25=144 1×= 108 X= V450 \$ 20.8