GUIDED NOTES: Creating Probability Simulations

A simulation consists of a collection of things that happen at random.

Example: Fifty-seven students participate in a lottery for a particularly desirable dorm. When the results are in all three winners were from the varsity team. This seems fishy... Twenty of the participants were members of the varsity team.

Use a simulation of determine whether an all-team outcome could reasonably be expected to happen

The component here is the selection of a student for the room.

Since there are 57 students in the drawing, let's use 1 – 57 to represent the students.

Let's use 1 – 20 represent the team members and 21 – 57 represent the rest of the students

You may get something like this:

Randint (1, 57, 3)

1 team members, 2 non-members this counts as "not all team members"

Randint (1, 57, 3) 5, 19, 7

유

all team members this counts as "all team members"

When you run the trial once, it gives you one possible result, but that's not enough to make a decision. It will take lots of trials to decide whether an all-team outcome would be reasonable. Let's run 10 trials and look at the results:

10	9	8	7	6	5	4	3	2	_	Trial #
6, 22, 54	55, 38, 29	22, 45, 51	42, 27, 20	11, 51, 23	6, 18, 35	45, 32, 11	19, 15, 1	4, 47, 23	14, 28, 56	Numbers
	0	0			2	l	3	1	only one team member	Result

Looking at these results, there is $\frac{1}{\sqrt{|Q_{\infty}|}}$ trial out of 10 that has the room going to three team members, so the probability would be $\frac{1}{\sqrt{|Q_{\infty}|}}$ Ten trials really isn't enough to make a decision either. It usually takes several hundred trials to get an accurate picture of the situation.

After 100 trials, results could look like this:

	not all team members	all team members	Room Selection
200	94	6	frequency

Since the simulation shows that there is a 100 ____chance that the room will be filled by all team members, it is _____/ is 1564______that this occurred.

You take a quiz with 6 multiple choice questions. Each question has 4 possible answers. Unfortunately, you forgot there was a quiz today, so you didn't study at all, so you have to guess at the answers. Design a simulation for this situation and determine the probability of getting at least half of the questions right.

First, figure out the probabilities we're working with

P(guessing right) = 4 P(guessing wrong) =

Now we have to assign numbers to use in our simulation that will have the same ratio as these probabilities. Since there are 4 options, use the digits 1 – 4. Let one number represent the correct answer, and the other three will represent the wrong answers.

 $_{-}$ = right answer $l_{1}2_{1}3$

 $\frac{12.3}{1}$ = wrong answers

Now we will run a random integer generator to simulate one try at the quiz. Since there are 6 questions on the quiz, we need 6 numbers. Run Randint(1, 4, 6) – this will give us 6 numbers between 1 and 4.

10	9	80	7	თ	ហ	4	ယ	2	1	inal#
2, 1, 4, 3, 2, 2	4, 3, 3, 3, 2, 4	2,4,4,2,4,3	1, 2, 4, 1, 3, 4	3, 1, 3, 1, 3, 2	1, 3, 4, 3, 1, 2	3, 3, 1, 1, 1, 4	4, 2, 3, 1, 3, 3	3, 4, 4, 2, 1, 1	1, 3, 2, 3, 4, 2	Numbers
	h	~	2	0	-		-	87		Number of Right Answers

What percentage of the trials had at least three answers correct? 10 or 10%

What's prob of getting at least 2 ans. correct?