| Name: | Hour: Date: | |---|---| | Lesson 8.3: Day 2: How man | y states can you name? | | | | | How many states can you name in one minute? We wanted of high school seniors to estimate a 95% confidence is a senior can name in 1 minute. | vill use this class as a random sample nterval for the mean number of states | | 1. When the timer starts, list as many states as you number of states you listed on the board. | can on a piece of paper. Write the | | number of states you listed on the board. 2. What type of data is this? Categorical or quantitative | e? Quantitative > means | | 2. Enter the class data at stapplet.com. Find the sam the dotplot of the sample data. | | | $n = \overline{x} = s_x =$ | | | 3. Construct a 95% confidence interval to estimate the | mean # of states a senior can name. | | STATE: State the parameter you want to estima | te and the confidence level. | | Parameter: $\mathcal{L} = true mean # of s$ | confidence level: 951. | | PLAN: Identify the appropriate inference method | and check conditions. | | Name of procedure: One sample t | interval for M | | Check conditions: -Random: -Random: Assumed n < 15 all ser | -Normal:
N≥30 CLT | | DO: If the conditions are met, perform the calcula | Sample shows no strong tions. Skew or outliers. | | General Formula for any confidence interval: | Point Estimate + Margin of Error | | Specific Formula for this confidence interval: | x ± t* Sx | | Plug numbers into the formula: | VI | | Answer: | | | conclude: Interpret your interval in the context Interpret: We are 95% confid from to capture | of the problem.
ent that the interval
S the true mean
name in 1 min. The Stats Medic | | 17 of states a senior con | I WILL IN T ANIM | | Lesson 8.3 Day 2 – The Four Step Process | | |--|-------------| | Important ideas: LT#1 4 steps (Changes) State: M> true mean State: M> true mean Plan: One sample t interval for M Plan: Normal Pop. is Normal - n>30 CLT - sample shows no strong skew or outliers DO: X t t* Sx LT#2 Sample SIZe Margin = t* 8x of Error the place of t* if it's unknown. | | | Conclude: - Nane Check Your Understanding | | | Administrators at your school want to estimate how much time students spend on homework, on average, during a typical week. They want to estimate μ at the 90% confidence level with a margin of error of at most 30 minutes. A pilot study indicated that the standard deviation of time spent on homework per week is about 154 minutes. How many students need to be surveyed to meet the administrators' goal? 30 = 1.645 x 154 | | | $30 = 1.645 \times \frac{154}{\sqrt{n}}$ $\sqrt{n^2} = (\frac{1.645 \times 154}{30})^2$ | | | $\sqrt{n} = \frac{1.645 \times 154}{30}$ $n = 71.31 \rightarrow [72.5]$ | wen | | 2. Biologists studying the healing of skin wounds measured the rate at which new cells close a cut made in the skin of an anesthetized newt. Here are data from a random sample of 1 newts, measured in micrometers (millionths of a meter) per hour: | ∌d
8 | | 29 27 34 40 22 28 14 35 26 35 12 30 23 18 11 22 23 33 | | | State State The mean healing rate at 95% level | 7 | | Plan: One sample t interval for M; I I I I I I I I I I I I I I I I I I | 40
naft. | | Do: Pt. Est ± margin of error X ± t* $\frac{Sx}{m}$ \rightarrow 25.67 ± 2.110 $\frac{8.32}{\sqrt{18}}$ \rightarrow (21.53,29) Canclude: We are 95% confident that the interval from 21.53 to 29.81 micrometer per hour captures the true mean healing rate. | | | the true mean healing rate. | SINICUIT | Name: Hour: ____ Date: ____