Name \qquad

Math 3 Honors Unit 6: Circles

You're
Pointless.

Monday	Tuesday	Wednesday	Thursday	Friday
			March 28 - Tangent lines HW: worksheet 6.1	March 29 Teacher work day No School!
April 1 - Chords and arcs HW: worksheet 6.2	April 2 - Inscribed angles HW: worksheet 6.3	April 3 - Arcs and segments HW: worksheet 6.4	April 4 - Arc length and area of a sector HW: worksheet 6.5	April 5 - Review for test HW: finish review
April 8 - TEST!!				

6.1 - Tangents of Circles

Assume that lines that appear to be tangent are tangent. O is the center of each circle. What is the value of x ?
1.

2.

3.

In each circle, what is the value of x to the nearest hundredth?
4.

5.

6.

7. $\overline{T Y}$ and $\overline{Z W}$ are diameters of $\odot S$. $\overline{T U}$ and $\overline{U X}$ are tangents of $\odot S$. What is $m \angle S Y Z$?

Each polygon circumscribes a circle. What is the perimeter of each polygon?
8.

9.

6.2 - Chords \& Arcs of Circles

1. The circles at the right are congruent. Which conclusion can you draw?
(A) $\overline{C D} \cong \overline{S T}$
(C) $\angle A E B \cong \angle Q U R$
(B) $\angle C E D \cong \angle S U T$
(D) $\widehat{B D} \cong \overparen{R T}$

2. $\overline{J G}$ is the diameter of $\odot M$. Which conclusion cannot be drawn from the diagram?
(f) $\overline{K N} \cong \overline{N I}$
(H) $\overline{J G} \perp \overline{H L}$
(G) $\widehat{L G} \cong \widehat{G H}$
(1) $\overline{G H} \cong \overline{G L}$

For Exercises 3 and 4, what is the value of x to the nearest tenth?
3.

4.

5. If $\angle A F B \cong \angle D F E$, what must be true?
(A) $\widehat{A B} \cong \overparen{D E}$
(C) $\overline{C F} \perp \overline{A E}$
(B) $\overparen{B C} \cong \overparen{D E}$
(D) $\angle B F C \cong \angle D F C$

6. A student draws ${ }^{\odot} \mathrm{X}$ with a diameter of 12 cm . Inside the circle she inscribes equilateral $\triangle \mathrm{ABC}$ so that $\overline{A B}$, $\overline{B C}$, and $\overline{C A}$ are all chords of the circle. The diameter of $\odot \mathrm{X}$ bisects $\overline{A B}$. The section of the diameter from the center of the circle to where it bisects $\overline{A B}$ is 3 cm . To the nearest whole number, what is the perimeter of the equilateral triangle inscribed in ${ }^{\circ} \mathrm{X}$?

Solve for the variable.
7.

8.

9.

10.

11.

12.

6.2 - Chords \& Arcs of Circles

1. The circles at the right are congruent. Which conclusion can you draw?
(A) $\overline{C D} \cong \overline{S T}$
(C) $\angle A E B \cong \angle Q U R$
(B) $\angle C E D \cong \angle S U T$
(D) $\overparen{B D} \cong \overparen{R T}$

2. $\overline{J G}$ is the diameter of $\odot M$. Which conclusion cannot be drawn from the diagram?
(F) $\overline{K N} \cong \overline{N I}$
(H) $\overline{J G} \perp \overline{H L}$
(G) $\widehat{L G} \cong \widehat{G H}$
(1) $\overline{G H} \cong \overline{G L}$

For Exercises 3 and 4, what is the value of x to the nearest tenth?

3.

4.

5. If $\angle A F B \cong \angle D F E$, what must be true?
(A) $\overparen{A B} \cong \overparen{D E}$
(C) $\overline{C F} \perp \overline{A E}$
(B) $\overparen{B C} \cong \overparen{D E}$
(D) $\angle B F C \cong \angle D F C$

6. A student draws ${ }^{\odot} \mathrm{X}$ with a diameter of 12 cm . Inside the circle she inscribes equilateral $\triangle \mathrm{ABC}$ so that $\overline{A B}$, $\overline{B C}$, and $\overline{C A}$ are all chords of the circle. The diameter of $\odot \mathrm{X}$ bisects $\overline{A B}$. The section of the diameter from the center of the circle to where it bisects $\overline{A B}$ is 3 cm . To the nearest whole number, what is the perimeter of the equilateral triangle inscribed in ${ }^{\circ} \mathrm{X}$?

Solve for the variable.
7.

8.

9.

10.

11.

12.

6.3 - Inscribed Angles

Find the value of each variable. For each circle, the dot represents the center.
1.

2.

3.

4.

5.

6.

Find the value of each variable. Lines that appear to be tangent are tangent.
7.

8.

9.

Find each indicated measure for $\odot M$.
10. $m \angle B$
11. $m \angle C$
12. $m \widehat{B C}$
13. $m \widehat{A C}$

Find the value of each variable. For each circle, the dot represents the center.
14.

15.

16.

6.5 - Arc Length and Area of a Sector

Determine the arc length and the area of a sector.
1)

2)

3)

Length of the arc $M N=$ \qquad Length of the arc $O P=$ \qquad Length of the arc $\mathrm{EF}=$ \qquad Area of a sector $=$ \qquad
4. central angles $=130^{\circ}$, arc length $=14 \mathrm{~cm}$ Find radius.
5. area of sector $=116 \pi \mathrm{~cm}^{2}$, central angle $=110^{\circ}$ Find diameter.
6. arc length $=8 \mathrm{~m} \mathrm{~cm}$, radius $=20 \mathrm{~cm}$

Find central angle.
7. radius $=2 \mathrm{~m}$, central angle $=103^{\circ}$

Find arc length.
8. area of sector $=17 \pi \mathrm{~cm}^{2}$, central angle $=75^{\circ}$

Find radius.
9. circumference $=4 \pi$ in, central angle $=87^{\circ}$ Find area of sector.

Find the arc length for each sector. Round the answer to two decimal places. (use $\pi=3.14$)
1)

2)

$$
\text { Area }=529.35 \text { in }^{2}
$$

$$
\text { Area }=153.86 \mathrm{~cm}^{2}
$$

Length of the arc $A B=$ \qquad Length of the arc $\mathrm{KL}=$ \qquad

