\qquad
Height \& Arm Span Correlation Activity

Measure your height and arm span. Record data.

Height (inches): \qquad Arm span (inches): \qquad
A. Create and label a scatterplot of the classes' data:

B. Calculate and interpret the correlation coefficient.
C. Calculate your personal contribution to the correlation coefficient.

Class mean height (\bar{x}) : \qquad Class standard dev height (Sx): \qquad

Class mean arm span (\bar{y} \qquad Class standard dev arm span (Sy): \qquad

$$
\left.\frac{(y o u r ~ h e i g h t-\bar{x})}{S x} \cdot \frac{(y o u r ~ a r m ~ s p a n}{}-\bar{y}\right)
$$

\qquad
\qquad
D. Remove the person who "contributed" the most to the correlation and re-calculate the correlation coefficient.

Revised Correlation Coefficient: \qquad
How much/what percent did the value change by?
E. What is the least squares regression equation for this association? (Remember to re-add the person we removed in part D). Define any variables used. Draw line on scatterplot in part A.

LSRL: \qquad
F. Calculate your personal residual value.

My predicted arm span (plug in your height to LSRL): \qquad
Residual = actual arm span - predicted arm span: \qquad

Who had the highest residual? \qquad Who had the lowest residual? \qquad
G. Remove the person who had the highest residual value and re-calculate the correlation coefficient.

Revised Correlation Coefficient: \qquad
How much/what percent did the value change by? How does this compare to the value in part D ?
H. Create and label a residual plot of the classes' data. Circle your personal data.:

