GUIDED NOTES: Creating Probability Simulations

A simulation consists of a collection of things that happen at random. There is a situation that is repeated a large number of times, called the component of the simulation. Each component has a set of possible outcomes.

Example: Fifty-seven students participate in a lottery for a particularly desirable dorm. Twenty of the participants were members of the same varsity team. All three winners were members of the team. Use a simulation of determine whether an all-team outcome could reasonably be expected to happen.

The component here is the selection of a student for the room.
Since there are 57 students in the drawing, let's use $1-57$ to represent the students.
Let's use 1-20 represent the team members and $21-57$ represent the rest of the students.
Run Randlnt $(1,57,3)$ to simulate drawing names. (eliminate any trials where the same number comes up more than once). If all three numbers are between 1 and 20, then the whole room goes to team members.

You may get something like this:

Randlnt (1, 57, 3)
23, 51, 19
1 team members, 2 non-members
this counts as "not all team members"

Randlnt (1, 57, 3)
5, 19, 7
all team members
this counts as "all team members"

When you run the trial once, it gives you one possible result, but that's not enough to make a decision. It will take lots of trials to decide whether an all-team outcome would be reasonable. Let's run 10 trials and look at the results:

Trial \#	Numbers	Result
1	$14,28,56$	only one team member
2	$4,47,23$	
3	$19,15,1$	
4	$45,32,11$	
5	$6,18,35$	
6	$11,51,23$	
7	$42,27,20$	
8	$22,45,51$	
9	$55,38,29$	
10	$6,22,54$	

Looking at these results, there is 1 trial out of 10 that has the room going to three team members, so the probability would be 10%. Ten trials really isn't enough to make a decision either. It usually takes several hundred trials to get an accurate picture of the situation.

After 100 trials, results could look like this:

Room Selection	frequency
all team members	6
not all team members	94

Since the simulation shows that there is a 6\% chance that the room will be filled by all team members, it is pretty surprising that this occurred.

You take a quiz with 6 multiple choice questions. Each question has 4 possible answers.
Unfortunately, you forgot there was a quiz today, so you didn't study at all, so you have to guess at the answers. Design a simulation for this situation and determine the probability of getting at least half of the questions right.

First, figure out the probabilities we're working with.

$$
P(\text { guessing right })=
$$

$\mathrm{P}($ guessing wrong $)=$ \qquad
Now we have to assign numbers to use in our simulation that will have the same ratio as these probabilities. Since there are 4 options, use the digits $1-4$. Let one number represent the correct answer, and the other three will represent the wrong answers.
___ = right answer \qquad $=$ wrong answers
Now we will run a random integer generator to simulate one try at the quiz. Since there are 6 questions on the quiz, we need 6 numbers. Run Randlnt $(1,4,6)$ - this will give us 6 numbers between 1 and 4 .

Trial \#	Numbers	Number of Right Answers
1	$1,3,2,3,4,2$	
2	$3,4,4,2,1,1,4$	
3	$4,2,3,1,3,3$	
4	$3,3,1,1,1,4$	
5	$1,3,4,3,1,2$	
6	$3,1,3,1,3,2$	
7	$1,2,4,1,3,4$	
8	$2,4,4,2,4,3$	
9	$4,3,3,3,2,4$	
10	$2,1,4,3,2,2$	

What percentage of the trials had at least three answers correct? \qquad

1. You take a quiz with 5 multiple choice questions. After you study, you estimate that you would have about an 80% chance of getting any individual question right. What are your chances of getting them all right?

Let 1 - 80 represent a right answer, 81-100 represents a wrong answer. Run Randlnt $(1,100,5)$ and count how many right answers you receive. Run this 20 times - determine how many of these 20 had 5 correct answers.
2. Joe plays on the basketball team and over the course of the season, makes 71% of his free throws. In the championship game, he is fouled late in the game, with his team down by 1 point. What are his chances of making both free throws and winning the game?

Let 1 - 71 represent a made free throw, 72-100 are misses. Run Randlnt(1, 100, 2) to represent two free throw shots. Record how many times Joe made both shots out of 20 trials.
3. A cereal company puts prizes in each box. There are 4 different prizes -20% of the boxes have a blue bouncy ball, 30% of the boxes have a green bouncy ball, 40% of the boxes have a red bouncy ball, and only 10% of the boxes have a multi-colored sparkly bouncy ball. Design a simulation to determine how many boxes you will need to buy to get all 4 bouncy balls.

Let $0,1=$ blue; 2, $3,4=$ green; 5, 6, $7,8=r e d$, and $9=$ multi-colored ball. Randlnt ($0,9,1$) will give the color of the first ball. Continue running until all 4 colors are received and record the number of tries it took to get all 4 colors. Repeat and find the mean of the number of tries after 20 trials.

