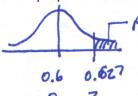


$$\hat{p} = \frac{607}{1000}$$

A similar sample was taken in Georgia. In the SRS of 1000, there were 583 users in the 18-29 age range. Is this strong evidence that the population proportion in Georgia is less than 60%.

583 < 10 N and there are still expected to be at least 10 successes + failures so ~ Normal



$$Z = \frac{0.583 - 0.6}{0.0155} = -1.0973$$

Not strong evidence since 0.14 > 10%

13. Another SRS was taken in North Carolina and this time there were 627 in the sample who were 18-29. Does this provide strong evidence that the proportion in NC is greater than 60%?

627 < 10 N so indep.

on in NC is greater than 60%?
$$Z = \frac{0.627 - 0.6}{0.0155} = 1.7428$$

$$P = 0.0407 < 10\%$$

Since the prob of this occurring if p=0.6 is less than 5% and 10%. then it is very unlikely and is strong evidence that A < 60%.

Does the shape of the sampling distribution change if we use a SRS of 1000 from the whole US if the population

proportion still is at 60%?

No, we still are assured independence and the sample size stays the same so the shape is unaffected.

Does the shape of the sampling distribution change if we use a SRS of 4000 from the whole US if the population 15. proportion still is at 60%?

We can still assume independence but the curve becomes \frac{1}{2} as vide since the sample was 4 times laser $\sigma_{\hat{p}} = \int \frac{(0.6)(0.4)}{4000} = 0.0077$